ELECTROCHEMISTRY PROBLEMS KEY

1. $\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{Fe}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+5 \mathrm{Fe}^{3+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
a) What is the oxidation number for Mn in $\mathrm{MnO}_{4}{ }^{-}(\mathrm{aq}) ?+7$
b) What is oxidized? Fe^{2+}
c) What is reduced? Mn in MnO_{4}^{-}
d) What is the oxidizing agent? MnO_{4}^{-}
e) What is the reducing agent? Fe^{2+}
2. Based on their $E^{\circ}{ }_{\text {red }}$ values, determine the best oxidizing agent, best reducing agent, worst oxidizing agent, and worst reducing agent.

Half-reaction	$\mathrm{E}_{\text {red }}^{\circ}$
$\mathrm{Co}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(s)$	-0.28 V
$\mathrm{Mn}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}(s)$	-1.18 V
$\mathrm{Cd}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(s)$	-0.40 V

best oxidizing agent $\quad \mathrm{Co}^{2+}$ (most $+\mathrm{E}_{\text {red }}^{\circ}=$ easiest to reduce)
best reducing agent $\mathrm{Mn}(\mathrm{s})$ (easiest to oxidize; has most $+\mathrm{E}^{\mathbf{o}}{ }_{\mathrm{x}}$)
worst oxidizing agent $\quad \mathrm{Mn}^{2+}$ (most $-\mathrm{E}_{\text {red }}^{\circ}=$ hardest to reduce)
worst reducing agent $\mathrm{Co}(\mathrm{s})$ (hardest to oxidize; has most $-\mathrm{E}^{\circ}{ }_{\mathrm{ox}}$)
3. Which of the following will react spontaneously? Need + V! Change sign for ox!
A. Cd with Mn^{2+}
B. Co with Cd^{2+}
C. Mn with Co
D. Mn with Cd^{2+}
E. Co with Mn^{2+} $+0.40+(-1.18)=-\quad+.28+(-.40)=-\quad \mathrm{NR}+1.18+(-.40)=+\quad+.28+(-1.18)=-$
4. If we were to make a Galvanic cell from the following metals, which would act as the anode and which as the cathode? Refer to table 19.1. Write the half-cell reactions and the overall balanced reaction for each cell. Calculate E° cell for each one.
a) $\mathrm{Fe}(\mathrm{s})$ and $\mathrm{Ni}(\mathrm{s})$
$\mathrm{Fe}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s}) \quad \mathrm{E}^{\circ}{ }_{\text {red }}=-0.44 \mathrm{~V}$ Reverse anode!
Cat $\mathrm{Ni}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s}) \quad \mathrm{E}^{\circ}{ }_{\text {red }}=-0.25 \mathrm{~V}=$ more + is cathode
$\mathrm{An} \mathrm{Fe}_{(s)} \rightarrow \mathrm{Fe}^{2+}(a q)+2 \mathrm{e}^{-} \quad \mathrm{E}_{\text {ox }}^{0}=-(-0.44 \mathrm{~V})=\mathbf{0 . 4 4} \mathrm{V}$
$\mathrm{Ni}^{2+}(a q)+\mathrm{Fe}(s) \rightarrow \mathrm{Ni}(\mathrm{s})+\mathrm{Fe}^{2+}(a q) \quad \mathrm{E}^{\circ}{ }_{\text {cell }}=-0.25 \mathrm{~V}+0.44 \mathrm{~V}=0.19 \mathrm{~V}$
b) $\mathrm{Cu}(\mathrm{s})$ and $\mathrm{Ag}(\mathrm{s})$
$\mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(s)$
$\mathrm{E}_{\text {red }}^{0}=0.34 \mathrm{~V}$ Reverse anode!
Cat $\left(\mathrm{Ag}^{+}(a q)+\mathrm{e}^{-} \rightarrow \mathbf{A g}(s)\right) \times 2 \quad \mathrm{E}^{0}$ red $=0.80 \mathrm{~V}=$ more + is cathode
$\mathrm{An}\left(\mathrm{Cu}(s) \rightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-}\right) \times 1 \quad \mathrm{E}^{\circ}{ }_{\mathrm{ox}}=-(0.34 \mathrm{~V})$
$2 \mathrm{Ag}^{+}(a q)+\mathrm{Cu}_{(s)} \rightarrow 2 \mathrm{Ag}(s)+\mathrm{Cu}^{2+}(a q) \mathrm{E}_{\text {cell }}^{0}=0.80 \mathrm{~V}-0.34 \mathrm{~V}=0.46 \mathrm{~V}$
5. Use the information in the table below to answer the following questions

Half-reaction	$\mathrm{E}_{\text {red }}^{\circ}$
$\mathrm{Au}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$	1.50 V
$\mathrm{Br}_{2}(\mathrm{I})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})$	1.07 V
$\mathrm{~Pb}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13 V
$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.25 V

a) What will E^{0} cell be if $\mathrm{Ni}(\mathrm{s})$ reacts with Au^{3+} ? Au^{+3} is reduced and Ni is oxidized!

Red Cat: $2 \times\left(\mathrm{Au}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})\right) \quad \mathrm{E}^{\circ}$ red $=1.50 \mathrm{~V}$
An Ox: $3 \times\left(\mathrm{Ni}(\mathrm{s}) \rightarrow \mathrm{Ni}^{2+}+2 e^{-}\right) \quad \mathrm{E}^{\circ} \mathrm{ox}=-(-0.25 \mathrm{~V}) \quad$ Change sign!
$2 \mathrm{Au}^{3+}+3 \mathrm{Ni}(\mathrm{s}) \rightarrow 2 \mathrm{Au}(\mathrm{s})+3 \mathrm{Ni}^{2+} \quad \mathrm{E}_{\text {cell }}^{0}=1.50 \mathrm{~V}+0.25 \mathrm{~V}=1.75 \mathrm{~V}$
b) What will E° cell be if Pb^{2+} reacts with $\mathrm{Br}{ }^{-}$? Pb^{+2} is reduced and Br^{-}is oxidized!
Red Cat: $\mathrm{Pb}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s}) \quad \mathrm{E}^{\circ}{ }_{\text {red }}=-0.13 \mathrm{~V}$

An Ox: $2 \mathrm{Br}(\mathrm{aq}) \rightarrow \mathrm{Br}_{2}(\mathrm{I})+2 \mathrm{e}^{-} \quad \mathrm{E}_{\text {ox }}^{\circ}=-(1.07 \mathrm{~V})$ Change sign!
$\mathrm{Pb}^{2+}+2 \mathrm{Br}{ }^{-}(\mathrm{aq}) \rightarrow \mathrm{Pb}(\mathrm{s})+\mathrm{Br}_{2}(\mathrm{I}) \quad \mathrm{E}^{\circ}$ cell $=-0.13 \mathrm{~V}-1.07 \mathrm{~V}=-1.20 \mathrm{~V}$
c) Calculate $\mathrm{E}^{\circ}{ }_{\text {cell }}$ for the following cell: $\mathrm{Ni}(\mathrm{s})\left|\mathrm{Ni}^{2+}(\mathrm{aq})\right|\left|\mathrm{Br}_{2}(\mathrm{l}), \mathrm{Br}^{-}(\mathrm{aq})\right| \mathrm{Pt}(\mathrm{s})$

An Ox: $\mathrm{Ni}(\mathrm{s}) \rightarrow \mathrm{Ni}^{2+}+2 \mathrm{e}^{-} \quad \mathrm{E}^{\circ}{ }_{\mathrm{ox}}=-(-0.25 \mathrm{~V})$ Change sign!
Red Cat: $\mathrm{Br}_{2}(\mathrm{I})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}{ }^{-}(\mathrm{aq}) \quad \mathrm{E}^{\circ}{ }_{\text {red }}=1.07 \mathrm{~V}$
$\mathrm{Br}_{2}(\mathrm{I})+\mathrm{Ni}(\mathrm{s}) \rightarrow 2 \mathrm{Br}{ }^{-}(\mathrm{aq})+\mathrm{Ni}^{2+} \quad \mathrm{E}^{\circ}{ }_{\text {cell }}=1.07 \mathrm{~V}+0.25 \mathrm{~V}=1.32 \mathrm{~V}$
d) Which of the reactions given in parts a-c are spontaneous? +V for a \& c
6. Calculate $\Delta \mathrm{G}^{\mathrm{o}}$ for the $\mathrm{Ni}(\mathrm{s})+\mathrm{Au}^{3+}$ reaction in problem 5 a .

$$
\begin{array}{ll}
\text { Cathode: } 2 \times\left(\mathrm{Au}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{~s})\right) & \mathrm{E}_{\text {red }}^{\circ}=1.50 \mathrm{~V} \\
\text { Anode: } 3 \times\left(\mathrm{Ni}(\mathrm{~s}) \rightarrow \mathrm{Ni}^{2+}+2 \mathrm{e}^{-}\right) & \mathrm{E}_{\text {ox }}^{\circ}=-(-0.25 \mathrm{~V})=0.25 \mathrm{~V} \\
\hline 2 \mathrm{Au}^{3+}+3 \mathrm{Ni}(\mathrm{~s}) \rightarrow 2 \mathrm{Au}(\mathrm{~s})+3 \mathrm{Ni}^{2+} & \mathrm{E}_{\text {cell }}^{\circ}=1.75 \mathrm{~V}
\end{array}
$$

$\mathrm{n}=6 \mathrm{~mol} \mathrm{e}^{-}$transferred from anode to cathode
$\Delta G^{0}=-n F E^{0}=-\left(6 \mathrm{~mol} / \mathrm{e}^{-}\right)\left(\frac{96500 \mathrm{~J}}{V \cdot \mathrm{~mole}}\right)(1.75 \mathrm{~V}) \quad \Delta G^{0}=-1.01 \times 10^{6} \mathrm{~J} \times \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}=-1.01 \times 10^{3} \mathrm{~kJ}$
7. Calculate K at $25^{\circ} \mathrm{C}$ for the $\mathrm{Ni}(\mathrm{s})+\mathrm{Br}_{2}(\mathrm{I})$ reaction in problem 5 c .

From $4 \mathrm{c}, \mathrm{E}^{\circ}{ }_{\text {cell }}=\mathbf{1 . 3 2} \mathbf{V}, \mathrm{n}=\mathbf{2}$
$E^{\circ}=\frac{0.0592 \mathrm{~V}}{n} \log K \quad$ Rearrange: $K=10^{\left(\frac{n E^{\circ}}{0.0592 \mathrm{~V}}\right)} \mathrm{K}=10^{\left(\frac{2 \times 1.32 \mathrm{~V}}{0.5592 \mathrm{~V}}\right)} \quad K=3.93 \times 10^{44}$
8. A galvanic cell utilizes the following reaction:

$$
2 \mathrm{Ag}^{+}+\mathrm{Pb}(\mathrm{~s}) \rightarrow \mathrm{Pb}^{2+}+2 \mathrm{Ag}(\mathrm{~s})
$$

a) Write the half reactions for the cell and calculate E° cell. (Refer to table 19.1)

Cat: $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}-\mathrm{Ag}(\mathrm{s}) \quad \mathrm{E}_{\text {red }}^{\circ}=0.80 \mathrm{~V}$
An: $\mathrm{Pb}(\mathrm{s}) \rightarrow \mathrm{Pb}^{+2}(\mathrm{aq})+2 \mathrm{e}-\quad \mathrm{E}_{\mathrm{ox}}^{\circ}=-(-0.13) \mathrm{V}=0.13 \mathrm{~V}$

$$
E_{\text {cell }}^{\circ}=0.80 \mathrm{~V}+0.13 \mathrm{~V}=0.93 \mathrm{~V} \quad E_{\text {cell }}^{\circ}=0.93 \mathrm{~V}
$$

b) Write the short-hand notation of this reaction.

$$
\mathrm{Pb}(\mathrm{~s})\left|\mathrm{Pb}^{+2}(\mathrm{aq}) \| \mathrm{Ag}^{+}(\mathrm{aq})\right| \mathrm{Ag}(\mathrm{~s})
$$

c) Calculate the cell potential, $\mathrm{E}_{\text {cell, }}$ if $\left[\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\right]=0.88 \mathrm{M}$ and $\left[\mathrm{Ag}\left(\mathrm{NO}_{3}\right)\right]=0.14 \mathrm{M}$.

$$
\begin{aligned}
& 2 \mathrm{Ag}^{+}+\mathrm{Pb}(\mathrm{~s}) \rightarrow \mathrm{Pb}^{2+}+2 \mathrm{Ag}(\mathrm{~s}) \\
& \mathrm{E}_{\text {cell }}^{0}=0.93 \mathrm{~V}, \mathrm{n}=2 \quad \mathrm{Q}=\frac{\left[\mathrm{PP}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}=\frac{(0.88)}{(0.14)^{2}} \quad \mathrm{Q}=44.9
\end{aligned}
$$

$$
\begin{aligned}
& E=E^{0}-(0.0592 \mathrm{~V} / n) \log Q \quad \Rightarrow \quad E=0.93 \mathrm{~V}-(0.0592 \mathrm{~V} / 2) \times \log 44.9 \\
& E=0.93 \mathrm{~V}-(0.0296 \mathrm{~V})(1.65)=0.93-0.049=0.88 \mathrm{~V} \quad E=0.88 \mathrm{~V}
\end{aligned}
$$

9. A cell utilizes the following reaction and operates at 298 K :

$$
2 \mathrm{H}^{+}(a q)+\mathrm{Zn}(s) \rightarrow \mathrm{Zn}^{2+}(a q)+\mathrm{H}_{2}(g)
$$

a) Calculate E^{0} cell. (Look up E° values).
$\mathrm{Ox} \quad \mathrm{Zn}(s) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \quad \mathrm{E}_{o x}^{\circ}=-(-0.76 \mathrm{~V})$
Red $2 \mathrm{e}^{-}+2 \mathrm{H}^{+}(a q) \rightarrow \mathrm{H}_{2}(g) \quad \frac{\mathrm{E}_{\text {red }}^{\circ}=0.00 \mathrm{~V}}{\mathrm{E}_{\text {cell }}^{\circ}=0.76 \mathrm{~V}}$
b) Calculate $\mathrm{E}_{\text {cell }}$ when $\left[\mathrm{Zn}^{2+}\right]=0.050 \mathrm{M}, \mathrm{P}_{\mathrm{H}_{2}}=0.25 \mathrm{~atm}$, and $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-4} \mathrm{M}$.

$$
\begin{aligned}
& \mathrm{E}=\mathrm{E}^{\circ}-\frac{0.0592 \mathrm{~V}}{\mathrm{n}} \log \mathrm{Q} \quad \mathrm{n}=2 ; \mathrm{Q}=\frac{\left[\mathrm{Zn}^{2+}\right] \mathrm{P}_{\mathrm{H}_{2}}}{\left[\mathrm{H}^{+}\right]^{2}} \\
& \mathrm{E}=0.76 \mathrm{~V}-\frac{0.0592 \mathrm{~V}}{2} \log \frac{(0.050)(025)}{\left(1.0 \times 10^{-4}\right)^{2}} \\
& \mathrm{E}=0.76-0.0296\left(\log 1.25 \times 10^{6}\right) \\
& \mathrm{E}=0.76-0.0296(+6.10)=0.76-0.18=0.58 \mathrm{~V} \quad E_{\text {cell }}=0.58 \mathrm{~V}
\end{aligned}
$$

10. How many grams of Cu can be collected in 1.00 hour by a current of 1.62 A from a CuSO_{4} solution?

$$
\begin{aligned}
& \text { Reduction reaction: } \mathrm{Cu}^{+2}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) \\
& \mathrm{A}=\mathrm{C} / \mathrm{s} \text { so need to multiply amps } \mathrm{x} \text { time in seconds to find charge (C). } \\
& 1 \mathrm{hr} \times \frac{3600 \mathrm{~s}}{1 \mathrm{hr}} \times \frac{1.62 \mathrm{C}}{\mathrm{~s}} \times \frac{1 \mathrm{~mol} \mathrm{e}^{-}}{96,500 \mathrm{C}} \times \frac{1 \mathrm{molCu}}{2 \mathrm{~mol} \mathrm{e}^{-}} \times \frac{63.5 \mathrm{gCu}}{\mathrm{~mol} \mathrm{Cu}}=1.92 \mathrm{~g} \mathrm{Cu}
\end{aligned}
$$

11. A current of 2.00 amps is passed through a solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ until 6.35 grams of Pb metal has been deposited. How many seconds did the current flow?

Reduction reaction: $\mathrm{Pb}^{+2}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$
$6.35 \mathrm{~g} \times \frac{\mathrm{molPb}}{207.2 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{e}^{-}}{1 \mathrm{~mol} \mathrm{~Pb}^{96500}} \times \frac{\mathrm{s}}{1 \mathrm{~mol} \mathrm{e}^{-}} \times \frac{\mathrm{s}}{2.00 \mathrm{C}}=2960 \mathrm{~s}$

