Equilibrium Worksheet

1. $2 \mathrm{NH}_{3}(\mathrm{~g}) \leftrightarrows \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$

At 500 K , the following concentrations were measured: $\left[\mathrm{N}_{2}\right]=3.0 \times 10^{-2} \mathrm{M},\left[\mathrm{H}_{2}\right]=3.7 \times 10^{-2}$ $\mathrm{M},\left[\mathrm{NH}_{3}\right]=1.6 \times 10^{-2} \mathrm{M}$. What is K_{c} ?
2. At 1000 K , the equilibrium partial pressures for the reaction below are: $\mathrm{CH}_{4}=0.20 \mathrm{~atm}$, $\mathrm{H}_{2} \mathrm{~S}=0.25 \mathrm{~atm}, \mathrm{CS}_{2}=0.52 \mathrm{~atm}$, and $\mathrm{H}_{2}=0.10 \mathrm{~atm}$. What is K_{p} ?
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \leftrightarrows \mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})$
3. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$ At $375^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=2.79 \times 10^{-5}$.
a) What is K_{p} ?
b) What is $\mathrm{P}_{\mathrm{NH}_{3}}$ if $\mathrm{P}_{\mathrm{H}_{2}}=1.24$ atm and $\mathrm{P}_{\mathrm{N}_{2}}=2.17$ atm at equilibrium?
4. Given the equations:

$$
\begin{array}{ll}
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{~s}) \leftrightarrows \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) & \mathrm{K}_{\mathrm{c}}=1.0 \times 10^{-3} \\
\mathrm{~S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{SO}_{2}(\mathrm{~g}) & \mathrm{K}_{\mathrm{c}}=5.0 \times 10^{6}
\end{array}
$$

Calculate the value of K_{c} for $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
5. For the reaction, $B \leftrightarrows 2 A, K_{c}=2$. Suppose 3.0 moles of A and 3.0 moles of B are introduced into a 2.00 L flask.
$[\mathrm{A}]=$
$[B]=$
$Q=$
a) Is this system at equilibrium?
b) In which direction will the reaction proceed to reach equilibrium?
c) As the system moves towards equilibrium, what happens to the concentration of B ? A ?
6. a) Calculate the equilibrium concentrations of all species for the following reaction if the initial concentrations of H_{2} and I_{2} are both 1.00 M .

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=50.5
$$

b) For the reaction above, if $\mathrm{K}_{\mathrm{p}}=50.5$ and the initial pressures are $\mathrm{HI}=0.975 \mathrm{~atm}, \mathrm{H}_{2}=0.105$ atm and $\mathrm{I}_{2}=0.105 \mathrm{~atm}$, what are the equilibrium pressures for all the substances?
7. Calculate the equilibrium concentrations for the reaction below if the initial $\left[\mathrm{N}_{2}\right]=0.80 \mathrm{M}$ and the initial $\left[\mathrm{O}_{2}\right]=.20 \mathrm{M}$ $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \leftrightarrows 2 \mathrm{NO}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{c}}=1.0 \times 10^{-5}$
6. Calculate the equilibrium concentrations of all species if 3.000 moles of H_{2} and 6.000 moles of F_{2} are placed in a 3.000 L container.

$$
\mathrm{H}_{2}(g)+\mathrm{F}_{2}(g) \leftrightarrows 2 \mathrm{HF}(g), \mathrm{K}_{\mathrm{c}}=1.15 \times 10^{2}
$$

