INITIAL RATES PROBLEMS

1. Given reaction rate data for: $\mathrm{F}_{2}(g)+2 \mathrm{ClO}_{2}(g) \rightarrow 2 \mathrm{FClO}_{2}(g)$

Experiment	$\left[\boldsymbol{F}_{2}\right](\boldsymbol{M})$	$\left[\mathrm{ClO}_{\mathbf{2}}\right](\boldsymbol{M})$	Initial Rate $(\boldsymbol{M} / \mathbf{s})$
1	0.10	0.010	1.2×10^{-3}
2	0.10	0.040	4.8×10^{-3}
3	0.20	0.010	2.4×10^{-3}

A. Determine the order of each reactant and the overall reaction order.
B. Write the rate law for the reaction.
C. Calculate the rate constant, k .
2. Given the rate data for: $\quad 2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$

Run	$\left[\mathrm{O}_{3}\right](\mathrm{M})$	Rate $(\mathrm{M} / \mathrm{s})$
1	0.00600	5.03×10^{-7}
2	0.00300	1.28×10^{-7}
3	0.00150	3.08×10^{-8}

A. What is the rate law for the reaction?
B. Calculate the rate constant, k .
C. What is the rate of reaction when $\left[\mathrm{O}_{3}\right]=0.00500 \mathrm{M}$?

FIRST ORDER KINETICS PROBLEMS

1. The rate law for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ is Rate $=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$, where $\mathrm{k}=5.0 \times 10^{-4} \mathrm{~s}^{-1}$. What is the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ after 1900 s , if the initial concentration is 0.56 M ?
2. The first order reaction, $\mathrm{SO}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{SO}_{2}+\mathrm{Cl}_{2}$, has a rate constant of $0.17 \mathrm{~h}^{-1}$.

If the initial concentration of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is $1.25 \times 10^{-3} \mathrm{M}$, how many seconds does it take for the concentration to drop to $0.31 \times 10^{-3} \mathrm{M}$?
3. Cobalt-60 is a radioisotope that decays by first-order kinetics and has a half-life of 5.26 years. The Cobalt-60 in a radiotherapy unit must be replaced when the concentration of Co decreases to 75.0% of its initial value. When does this occur?
4. The first order reaction, $\mathrm{CH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}$, has a rate constant of $6.3 \times 10^{-4} \mathrm{~s}^{-1}$ at $230^{\circ} \mathrm{C}$.
A. What is the half-life of the reaction?
B. How much of a 10.0 g sample of $\mathrm{CH}_{3} \mathrm{NC}$ will remain after 5 half-lives?
C. How many seconds would be required for 75% of a $\mathrm{CH}_{3} \mathrm{NC}$ sample to decompose?

ACTIVATION ENERGY AND REACTION MECHANISMS

1. Draw the potential energy profile for a reaction with $\Delta \mathrm{H}=-150 \mathrm{~kJ}$ and $\mathrm{E}_{\mathrm{a}}=100 \mathrm{~kJ}$.
2. A certain first-order reaction has a rate constant of $1.75 \times 10^{-1} \mathrm{~s}^{-1}$ at $20.0^{\circ} \mathrm{C}$. What is the value of k at $60.0^{\circ} \mathrm{C}$ if $\mathrm{E}_{\mathrm{a}}=55.5 \mathrm{~kJ} / \mathrm{mol}$?
3. The following mechanism has been proposed for the reaction: $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$

Step 1: $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ slow
Step 2: $2 \mathrm{NO}_{2}+2 \mathrm{SO}_{2} \rightarrow 2 \mathrm{NO}+2 \mathrm{SO}_{3}$ fast
A. Which is the rate determining step?
B. What is the molecularity of the rate determining step?
C. Identify the catalyst.
D. Identify the intermediate.
E. Write the rate law for the reaction.
F. What is the overall reaction order?

