NUCLEAR CHEMISTRY PROBLEMS KEY

1. Complete the following nuclear reactions:

A. ${}^{221}_{87}$ Fr $\rightarrow {}^{217}_{85}$ At $+ {}^{4}_{2}$ He B. ${}^{213}_{83}$ Bi $\rightarrow {}^{213}_{84}$ Po $+ {}^{0}_{-1}$ e C. ${}^{37}_{18}$ Ar $+ {}^{0}_{-1}$ e $\rightarrow {}^{37}_{17}$ Cl D. ${}^{131}_{53}$ I $\rightarrow 4{}^{1}_{0}$ n $+ {}^{127}_{53}$ I

- 2. Write equations for the following nuclear reactions:
 - A) Radon-222 decays by alpha emission.

 $^{222}_{86}$ Rn $\rightarrow ^{218}_{84}$ Po + $^{4}_{2}$ He

B) The carbon-14 isotope undergoes beta decay.

 ${}^{14}_{6}\mathbf{C} \rightarrow {}^{14}_{7}\mathbf{N} + {}^{0}_{-1}\mathbf{e}$

3. A radioisotope decays to give an alpha particle and Rn-222. What was the original isotope?

a) Po-218 b) Th-224 c) Pb-220 d) Ra-226 e) none of these

4. Plutonium-239 has a half life of 2.41×10^4 yr. If you have a 10.00 mg sample how much will remain after 4 half-lives have passed?

10.00 mg $\left(\frac{1}{2}\right)^4$ = 0.625 mg

5. If you ingest a sample containing Iodine-131, how much time is required for a 75.0 mg sample to decay to 12.5 mg? The half-life for I-131 is 8.05 days.

6. The half-life of ⁹⁸Au is 2.7 days. If you begin with 5.6 mg of this gold isotope, what mass remains after 9.5 days?

k
$$t_{1/2} = 0.693$$

k $= \frac{0.693}{2.7 \, day} = 0.26 \, d^{-1}$

ln $\left(\frac{A_t}{A_0}\right) = -kt$ \Rightarrow ln $\frac{Au_t}{5.6 \, mg} = -(0.26 \, d^{-1})(9.5 \, day)$

ln $\frac{Au_t}{5.6 \, mg} = -2.47$

Take anti ln both sides: $\frac{A_t}{5.6 mg} = e^{-2.47} = 0.0846$

$$A_t = = 0.0846 \times 5.6 \text{ mg} = 0.47 \text{ mg}$$