Solubility Equilibria Problems Key

General approach to solving solubility problems:

- I. Write salt dissolution reaction (use Equilibrium arrow!)
- \Rightarrow break solid salt (reactant) into ions (product); include charges and coefficients for # of ions!
- \Rightarrow don't include water as a reactant!
- II. Write K_{sp} expression
 - \Rightarrow don't include solid salt in equilibrium constant!
- III. Set up ICE.
 - \Rightarrow x = molar solubility
 - \Rightarrow Can use Molar mass to convert from molar solubility to gram solubility.
- 1) If a saturated solution prepared by dissolving CaF_2 in water has $[Ca^{2+}] = 3.3 \times 10^{-4}$ M, what is the value of K_{sp}?

Dissolution eq: $CaF_2(s) \leftrightarrows Ca^{2+}(aq) + 2F(aq)$ breaks into 2 F ions not F₂!

	$CaF_{2}(s) \leftrightarrows Ca^{2+}(aq) + 2F^{-}(aq)$			Initial []'s = 0
I		0	0	$[\Gamma^{-1}]$ is shown by the $[O_{-2}^{2+1}]$
С		+X	+2x	[F] is double the [Ca ⁻⁺]
Е		Х	2x	$x = [Ca^{2+}] = 3.3 \times 10^{-4} M$
$K_{rr} = [Ca^{2+}][F^{-}]^2$ $[F^{-}] = 2x = 6.6 \times 10^{-4} M$				

$$K_{sp} = (3.3 \times 10^{-4} \text{ M})(6.6 \times 10^{-4})^2$$
 $K_{sp} = 1.4 \times 10^{-10}$

Or $K_{sp} = x(2x)^2 = 4x^3$; plug in x = 3.3×10⁻⁴ M $K_{sp} = 4(3.3 \times 10^{-4})^3 = 1.4 \times 10^{-10}$

2) K_{sp} for AI(OH)₃ is 1.9×10^{-33} . Calculate the molar solubility.

 $AI(OH)_3(s) \leftrightarrows AI^{3+}(aq) + 3OH^{-}(aq)$

	$AI(OH)_3(s) \leftrightarrows AI^{3+}(aq) + 3OH^{-}(aq)$			
I		0	0	
С		+X	+3x	
Е		Х	3x	

$$\mathbf{X} = \left(\frac{1.9 \times 10^{-33}}{27}\right)^{1/4} = (7.04 \times 10^{-35})^{1/4} = 2.9 \times 10^{-9} \,\mathrm{M}$$

 $K_{sp} = [AI^{3+}][OH^{-}]^{3}$ 1.9 × 10⁻³³= x(3x)³ 1.9 × 10⁻³³= 27x⁴

3) The solubility of Ca(OH)₂ is found to be 0.233 g/L. Calculate $K_{sp.}$

Dissolution eq: Ca(OH)₂(s) \leftrightarrows Ca²⁺(aq) + 2OH⁻(aq)

	$Ca(OH)_{2(s)} \leftrightarrows Ca^{2+}(aq) + 2OH^{-}(aq)$			$K_{sn} = [Ca^{2+}][OH^{-}]^{2}$
I		0	0	$(2x)^2 (2x)^2$
С		+x	+2x	$\kappa_{sp} = x(2x) = 4x$
Е		х	2x	Need mol/L of Ca(OH) ₂
$X = \frac{0.233g}{L} \times \frac{1 mol}{74.10 g} = 3.14 \times 10^{-3} M \qquad K_{sp} = 10^{-3} M \qquad K_$				K _{sp} = 4(3.14×10 ⁻³) ³ = <mark>1.24×10⁻⁷</mark>

4) a) Calculate the molar solubility of SrF_2 in pure water ($K_{sp} = 4.3 \times 10^{-9}$).

Dissolution eq: $SrF_{2}(s) \leftrightarrows Sr^{2+}(aq) + 2F^{-}(aq)$

breaks into 2 F⁻ ions not F₂!

	$SrF_{2}(s) \leftrightarrows$	$Sr^{2+}(aq)$	+ 2F ⁻ (<i>aq</i>)	$K_{sp} = [Sr^{2+}][F^{-}]^{2}$
		0	0	$12 \times 10^{-9} - x/2$
С		+X	+2x	$4.3 \times 10 = X(2)$
Е		Х	2x	$x = (4.3 \times 10^{-9})/4$

 $4.3 \times 10^{-9} = x(2x)^2 = 4x^3$ $x = (4.3 \times 10^{-9}/4)^{1/3} = (1.075 \times 10^{-9})^{1/3}$

 $x = 1.0 \times 10^{-3}$ M = molar solubility of SrF₂

b) Calculate the molar solubility of SrF₂ in 0.010 M NaF.

Assume SrF_2 is added to a NaF solution so $[Sr^{2+}]$ is initially 0, but NaF provides $[F^-]$.

NaF is soluble salt: NaF \rightarrow Na⁺ + F⁻ F⁻ is common ion

1:1 ratio so [NaF] = [F⁻] = 0.010 M

	$\operatorname{SrF}_{2}(s) \leftrightarrows \operatorname{Sr}^{2+}(aq) + 2F(aq)$			
		0	0.010	
С		+X	+2x	
E		Х	0.010 + 2x	

F⁻ comes from NaF, so don't double [F⁻] $K_{sp} = [Sr^{2+}][F^{-}]^2$ $4.3 \times 10^{-9} = x(0.010 + 2x)^2$

Assume 2x is a lot smaller than 0.010 \Rightarrow 4.3 ×10⁻⁹ = x(0.010)²

$$x = \frac{4.3 \times 10^{-9}}{(0.010)^2} \qquad x = 4.3 \times 10^{-5} \text{ M} = \text{molar solubility of } SrF_2 \text{ with common ion}$$

 \Rightarrow Adding common ion \downarrow solubility of SrF₂

5) Will a precipitate form when 0.150 L of 0.10 M lead (II) nitrate and 0.100 L of 0.20 M sodium chloride are mixed? For PbCl₂, $K_{sp} = 1.2 \times 10^{-5}$

DR precipitation reaction: $Pb(NO_3)_2(aq) + 2NaCl(aq) \rightarrow PbCl_2(s) + 2NaNO_3(aq)$ **Solubility reaction**: $PbCl_2(s) \leftrightarrows Pb^{2+} + 2Cl^{-}$

Will a precipitate form – indicates we need to find Q for PbCl₂!

 $Q = [Pb^{2+}][Cl^{-}]^{2}$

1:1 mole ratios so initial $[Pb^{2+}] = [Pb(NO_3)_2] = 0.10 \text{ M};$ initial $[Cl^-] = [NaCl] = 0.20 \text{ M}$

After combining solutions:
$$[Pb^{2+}] = \left(\frac{0.10M Pb^{2+} \times 0.150L}{0.250L}\right) = 0.060 \text{ M Pb}^{2+}$$

$$[CI^{-}] = \left(\frac{0.20MCI^{-} \times 0.100L}{0.250L}\right) = 0.080 \text{ M CI}^{-}$$

 $Q = (0.060)(0.080)^2 = 3.8 \times 10^{-4}$

Q > K₅₽, so PbCl₂ does precipitate. Eq shifts ←