Chapter 8 Practice Worksheet: Formulas, Equations, and Moles

1) Balancing Equations

2) For the reaction on the right, which of the following equations **best** represents the reaction?

a. $A + B \rightarrow C + D$ b. $6A + 4B \rightarrow C + D$ c. $A + 2B \rightarrow 2C + D$ d. $3A + 2B \rightarrow 2C + D$ e. $3A + 2B \rightarrow 4C + 2D$

3) Calculate the molar masses of the following substances:

a. NO ₂	e. Ca ₃ (PO ₄) ₂
b. C ₆ H ₆	f. Li ₂ CO ₃
c. NaI	g. CHCl ₃
d. CS ₂	

4) Stoichiometric Conversions: Complete the table below by converting between numbers of particles, moles, and grams.

Grams	Moles	# Atoms, Molecules, Particles
		$6.02 \text{ x } 10^{23} \text{ Hg atoms}$
	1.00 mol C atoms	
10.00 g H ₂		
		$2.95 \times 10^{25} \text{ CH}_4 \text{ molecules}$
2.00 g Mg(NO ₃) ₂		
	2.00 mol CO ₂ molecules	

- 5) Avogadro's Number and the Mole
 - a. How many oxygen atoms are in one molecule of H_2O ?
 - b. How many hydrogen atoms are in one molecule of H₂O?
 - c. How many molecules of H_2O are in 1.0 grams of H_2O ?
 - d. How many H atoms are in 1.0 grams of H_2O ?

- e. How many atoms are in 3.14 g of copper (Cu)?
- f. How many atoms are contained in 1.0 grams of CH₄?
- g. How many ions are contained in 5.0612 grams of MgCl₂?
- h. How many molecules of ethane (C_2H_6) are there in 0.334 g of ethane?
- i. The density of water reaches a maximum of 1.00 g/mL at 4°C. How many water molecules are there in 2.56 mL of water at 4°C?

6) Stoichiometry: Chemical Arithmetic

For each equation, starting amount and s Equation $S(s) + O_2(g) \rightarrow SO_2(g)$	ubstance shown, calculate the <u>Starting amount/substance</u> 2.35 moles S	amount of product produced. Product amount/substance moles SO ₂
Si (s) + 2Cl ₂ (g) \rightarrow SiCl ₄ (l)	4.1 moles Cl ₂	grams SiCl ₄
$3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$	0.03445 grams H ₂	grams NH ₃
KCN (aq) + HCl (aq) \rightarrow KCl (aq) + HCN (g	g) 1.09 grams HCl	moles HCN
$2\mathrm{NH}_{3}\left(\mathrm{g}\right)+\mathrm{H}_{2}\mathrm{SO}_{4}\left(\mathrm{aq}\right) (\mathrm{NH}_{4})_{2}\mathrm{SO}_{4}\left(\mathrm{aq}\right)$	0.00568 grams NH ₃	grams (NH ₄) ₂ SO ₄
2NO (g) + O ₂ (g) \rightarrow 2NO ₂ (g)	6.50 moles O ₂	moles NO ₂

Name: _____

7) Yields of Chemical Reactions/Limiting Reactants

a. MnO_2 reacts with HCl to produce $MnCl_2$, Cl_2 , and H_2O . Write a balanced equation for this reaction. If 0.86 moles of MnO_2 and 48.2 grams of HCl react, which reagent will be used up first? How many grams of Cl_2 will be produced? How many moles of the excess reagent will be left over? If 19.8 grams of Cl_2 were obtained in lab, what is the percent yield?

b. ____CaF₂ + ____H₂SO₄ \rightarrow ____CaSO₄ + ____HF In the reaction above, you begin with 6.00 g of CaF₂ and 12.592 g H₂SO₄. You obtain 2.86 g of HF as a product. What is the percent yield of HF?

c. $\underline{K_3PO_4(aq)} + \underline{AgNO_3(aq)} \rightarrow \underline{KNO_3(aq)} + \underline{Ag_3PO_4(s)}$ 70.5 mg 15.0 mL of 0.050 M Find the mass of precipitate formed in this reaction.

Percent Composition and Empirical Formulas

- 8) What is the mass percent of each element in the following compounds?
 - a. $CaCl_2$
 - b. Fe_2O_3
 - c. $C_6H_{10}S_2O$

9) Calculate the empirical formulas of compounds containing the following percentages of elements. Use the molar mass to calculate the molecular formula for that compound as well.

- a. 44.4% C, 6.21% H, 39.5% S, and 9.86% O; molar mass = 486.39 g/mol
- b. 20.2% Al, 79.8% Cl; molar mass = 266.6 g/mol
- c. 2.1% H, 65.2% O, 32.6% S; molar mass = 195.95 g/mol
- d. 19.8% C, 2.50% H, 11.6% N, 66.1% O; molar mass = 360 g/mol