\qquad

Chapter 8 Practice Worksheet:

Formulas, Equations, and Moles

1) Balancing Equations
a. $\quad \mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \ldots \mathrm{~N}_{2} \mathrm{O}_{4}+\ldots \mathrm{O}_{2}$
b. \qquad $\mathrm{CO}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad CO_{2}
c. \qquad $\mathrm{H}_{2}+$ \qquad $\mathrm{Br}_{2} \rightarrow$ \qquad HBr
d. $\quad _\quad \mathrm{K}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots \quad \mathrm{KOH}+\ldots \mathrm{H}_{2}$
e. \qquad $\mathrm{Mg}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad MgO
f. \qquad $\mathrm{O}_{3} \rightarrow \mathrm{O}_{2}$
g. \qquad $\mathrm{H}_{2} \mathrm{O}+$ \qquad O_{2}
h. \qquad $\mathrm{N}_{2}+$ \qquad $\mathrm{H}_{2} \rightarrow$ NH_{3}
i. \qquad $\mathrm{AgCl} \rightarrow \ldots \mathrm{ZnCl}_{2}+$ \qquad Ag
j. \qquad $S_{8}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad SO_{2}
k. \qquad $\mathrm{NaOH}+$ \qquad $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow-\mathrm{Na}_{2} \mathrm{SO}_{4}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$
1. \qquad $\mathrm{Cl}_{2}+$ \qquad $\mathrm{NaI} \rightarrow$ \qquad $\mathrm{NaCl}+$ \qquad I_{2}
m. \qquad $\mathrm{KOH}+$ \qquad $\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{~K}_{3} \mathrm{PO}_{4}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$
n. \qquad $\mathrm{CH}_{4}+$ \qquad $\mathrm{Br}_{2} \rightarrow$ \qquad $\mathrm{CBr}_{4}+$ \qquad HBr
2) For the reaction on the right, which of the following equations best represents the reaction?
a. $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$
b. $6 \mathrm{~A}+4 \mathrm{~B} \rightarrow \mathrm{C}+\mathrm{D}$
c. $\mathrm{A}+2 \mathrm{~B} \rightarrow 2 \mathrm{C}+\mathrm{D}$
d. $3 \mathrm{~A}+2 \mathrm{~B} \rightarrow 2 \mathrm{C}+\mathrm{D}$
e. $3 \mathrm{~A}+2 \mathrm{~B} \rightarrow 4 \mathrm{C}+2 \mathrm{D}$

\qquad
\qquad
3) Calculate the molar masses of the following substances:
a. NO_{2}
b. $\mathrm{C}_{6} \mathrm{H}_{6}$
c. NaI
d. CS_{2}
e. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
f. $\mathrm{Li}_{2} \mathrm{CO}_{3}$
g. CHCl_{3}
4) Stoichiometric Conversions: Complete the table below by converting between numbers of particles, moles, and grams.

Grams	Moles	\# Atoms, Molecules, Particles
		$6.02 \times 10^{23} \mathrm{Hg}$ atoms
	1.00 mol C atoms	
$10.00 \mathrm{~g} \mathrm{H}_{2}$		
		$2.95 \times 10^{25} \mathrm{CH}_{4}$ molecules
$2.00{\mathrm{~g} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}$		
	$2.00 \mathrm{~mol} \mathrm{CO}_{2}$ molecules	

5) Avogadro's Number and the Mole
a. How many oxygen atoms are in one molecule of $\mathrm{H}_{2} \mathrm{O}$?
b. How many hydrogen atoms are in one molecule of $\mathrm{H}_{2} \mathrm{O}$?
c. How many molecules of $\mathrm{H}_{2} \mathrm{O}$ are in 1.0 grams of $\mathrm{H}_{2} \mathrm{O}$?
d. How many H atoms are in 1.0 grams of $\mathrm{H}_{2} \mathrm{O}$?
\qquad
e. How many atoms are in 3.14 g of copper (Cu) ?
f. How many atoms are contained in 1.0 grams of CH_{4} ?
g. How many ions are contained in 5.0612 grams of MgCl_{2} ?
h. How many molecules of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ are there in 0.334 g of ethane?
i. The density of water reaches a maximum of $1.00 \mathrm{~g} / \mathrm{mL}$ at $4^{\circ} \mathrm{C}$. How many water molecules are there in 2.56 mL of water at $4^{\circ} \mathrm{C}$?
6) Stoichiometry: Chemical Arithmetic

For each equation, starting amount and substance shown, calculate the amount of product produced.

Equation

$\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})$
$\mathrm{Si}(\mathrm{s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{SiCl}_{4}(\mathrm{l})$
$3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\mathrm{KCN}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{KCl}(\mathrm{aq})+\mathrm{HCN}(\mathrm{g})$
$2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq}) \quad 0.00568$ grams $\mathrm{NH}_{3} \quad$ grams $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
6.50 moles O_{2}
moles NO_{2}
\qquad
7) Yields of Chemical Reactions/Limiting Reactants
a. MnO_{2} reacts with HCl to produce $\mathrm{MnCl}_{2}, \mathrm{Cl}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$. Write a balanced equation for this reaction. If 0.86 moles of MnO_{2} and 48.2 grams of HCl react, which reagent will be used up first? How many grams of Cl_{2} will be produced? How many moles of the excess reagent will be left over? If 19.8 grams of Cl_{2} were obtained in lab, what is the percent yield?
b. $\quad \mathrm{CaF}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow ـ \mathrm{CaSO}_{4}+$ \qquad HF In the reaction above, you begin with 6.00 g of CaF_{2} and $12.592 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$. You obtain 2.86 g of HF as a product. What is the percent yield of HF?
c. $]_{7} \mathrm{~K}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\ldots \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{KNO}_{3}(\mathrm{aq})+\ldots \mathrm{Ag}_{3} \mathrm{PO}_{4}(\mathrm{~s})$ $70.5 \mathrm{mg} \quad 15.0 \mathrm{~mL}$ of 0.050 M
Find the mass of precipitate formed in this reaction.
\qquad

Percent Composition and Empirical Formulas

8) What is the mass percent of each element in the following compounds?
a. CaCl_{2}
b. $\mathrm{Fe}_{2} \mathrm{O}_{3}$
c. $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~S}_{2} \mathrm{O}$
9) Calculate the empirical formulas of compounds containing the following percentages of elements. Use the molar mass to calculate the molecular formula for that compound as well.
a. $44.4 \% \mathrm{C}, 6.21 \% \mathrm{H}, 39.5 \% \mathrm{~S}$, and $9.86 \% \mathrm{O}$; molar mass $=486.39 \mathrm{~g} / \mathrm{mol}$
b. $20.2 \% \mathrm{Al}, 79.8 \% \mathrm{Cl} ;$ molar mass $=266.6 \mathrm{~g} / \mathrm{mol}$
c. $2.1 \% \mathrm{H}, 65.2 \% \mathrm{O}, 32.6 \% \mathrm{~S}$; molar mass $=195.95 \mathrm{~g} / \mathrm{mol}$
d. $19.8 \% \mathrm{C}, 2.50 \% \mathrm{H}, 11.6 \% \mathrm{~N}, 66.1 \% \mathrm{O}$; molar mass $=360 \mathrm{~g} / \mathrm{mol}$
