Lipids and Membranes

Chapter 11

Overview

Lipids occur in nature

- Substances that dissolve in non-polar solvents
 - Egg yolks, human nervous system
 - Component of plant, animal, microbial membranes

Functions:

- Energy storage fats & oils
- Structural cell membranes
- Chemical signals, vitamins, pigments
- Protection waterproofing

Lipids and Membranes

- Classified on basis of common solubility properties
 - soluble in organic solvents diethyl ether, chloroform, methylene chloride, and acetone
- Amphipathic polar head, non-polar tail
- Open Chain forms
 - fatty acids, triacylglycerols, sphingolipids, phosphoacylglycerols, glycolipids,
 - lipid-soluble vitamins
 - prostaglandins, leukotrienes, and thromboxanes
- Cyclic forms
 - cholesterol, steroid hormones, and bile acids

Lipids classes:

- 1. Fatty acids
- 2. Triacylglycerols
- 3. Wax esters
- 4. Phospholipids
- 5. Sphingolipids
- 6. Isoprenoids

Fatty Acids

•Monocarboxylic acids – carboxyl head; hydrocarbon chain tail

- •Even number of carbons 12 20
- Numbered from the carboxylate end, α-carbon is adjacent to the carboxylate group
- Terminal methyl carbon omega (ω) carbon
- Hydrolysis of animal fats, vegetable oils or phosphdiacylglycerols of membranes

Functions:

- Insulation maintain body temperature
- Energy storage breakdown of fatty acids for molecules for energy production
- •Water repellent fur, feathers

Common Name	Structure	Abbreviation
Saturated Fatty Acids		
Myristic acid	$CH_3(CH_2)_{12}COOH$	14:0
Palmitic acid	$CH_3(CH_2)_{12}CH_2CH_2COOH$	16:0
Stearic acid	$CH_3(CH_2)_{12}CH_2CH_2CH_2CH_2COOH$	18:0
Arachidic acid	$CH_{3}(CH_{2})_{12}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}COOH$	20:0
Lignoceric acid	$CH_{3}(CH_{2})_{12}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}COOH$	24:0
Cerotic acid	$CH_3(CH_2)_{12}CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_2$	26:0
Unsaturated Fatty Acids		
Palmitoleic acid	$ \begin{array}{c} H & H \\ \downarrow & \downarrow \\ CH_3(CH_2)_5C = C(CH_2)_7COOH \end{array} $	16:1 ^{Δ9}
Oleic acid	$H H H \\ CH_3(CH_2)_7C = C(CH_2)_7COOH$	$18:1^{\Delta 9}$
Linoleic acid	$\begin{array}{c} H & H & H & H \\ & & & \\ CH_3(CH_2)_4C = C - CH_2 - C = C(CH_2)_7COOH \end{array}$	18:2 ^{Δ9,12}
α -Linolenic acid	$\begin{array}{c} H & H & H & H & H & H \\ & & & \\ CH_3CH_2C = C - CH_2 - C = C - CH_2 - C = C(CH_2)_7COOH \end{array}$	18:3 ^{Δ9,12,15}
γ-Linolenic acid	$CH_{3}(CH_{2})_{3} - \begin{pmatrix} H & H \\ & \\ CH_{2} - C = C \end{pmatrix}_{3} - (CH_{2})_{4} - COOH$	18:3 ^{\Delta6,9,12}
Arachidonic acid	$CH_{3}(CH_{2})_{3} - \begin{pmatrix} H & H \\ & \\ CH_{2} - C = C \end{pmatrix}_{4} - (CH_{2})_{3}COOH$	20:4 ^{5,8,11,14}

TABLE 11.1 Examples of Fatty Acids

From McKee and McKee, *Biochemistry*, 5th Edition, © 2011 Oxford University Press

Saturated versus unsaturated Fatty acids

From McKee and McKee, Biochemistry, 5th Edition, © 2011 Oxford University Press

Plants and bacteria – synthesize fatty acids from acetyl-CoA
Animals acquire most of theirs from dietary sources

- Nonessential fatty acids mammals can synthesize saturated FA & some unsaturated ones
 - Adding 2-C units & introducing double bonds
- **Essential fatty acids** acquired from the diet
 - **•Omega-3 fatty acids** (i.e., α-linolenic acid and its derivatives) may promote cardiovascular health

•Acylated proteins - fatty acids attached to protein

- acyl groups help facilitate interactions with the environment
 - Myristoylation and palmitoylation

 Eicosanoids – prostaglandins, thromboxanes, leukotrienes
 Mediate a wide variety of physiological processes: smooth muscle contraction, inflammation, pain perception, and blood flow regulation
 Arachidonic acid – 20 carbon atoms, 4 double bonds
 Precursor for all

 Prostaglandins (a) contain a cyclopentane ring and hydroxyl groups at C-11 and C-15

Involved in inflammation, digestion, and reproduction

Thromboxanes (b) - cyclic ether, synthesized by platets

 Involved in platelet aggregation, vasoconstriction following tissue injury

•Leukotrienes (c) – linear with triene group (white blood cells)

•Anaphylaxis (LTC₄, LTD₄, and LTE₄) – severe allergic reaction

 blood vessel fluid leakage, white blood cell chemo-attractant, vasoconstriction, edema, broncho-constriction

From McKee and McKee, Biochemistry, 5th Edition, © 2011 Oxford University Press

Triacylglycerols

•Esters of glycerol with three fatty acids; **neutral fats**

- Contain fatty acids of varying lengths mixture of saturated and unsaturated
- Accumulate in adipose tissue storage
 - Lipases hydrolyze ester linkages
- Solid at room temperature; high saturated fatty acid composition
- Liquid at room temperature; high unsaturated fatty acid composition

Saponification - natural soaps are prepared by boiling triglycerides (animal fats or vegetable oils) with NaOH

- Soaps form water-insoluble salts when used in water containing Ca(II), Mg(II), and Fe(III) ions (hard water)
 - Reactions with acids/bases as catalysts
- Glycerol creams, lotions, nitroglycerin

- Roles in animals: energy storage (also in plants), insulation at low temperatures, water repellent for some animals' feathers and fur
 - Better energy storage form:
 - 1. Hydrophobic coalesce into droplets; store an equivalent amount of energy in about one-eighth the space
 - 2. More reduced can release more electrons per molecule when oxidized

Wax Esters

- Composed of long-chain fatty acids and long-chain alcohols
- Protective coatings leaves, stems, fruits of plants; skin and fur of animals
- Examples include myricyl cerotate (beeswax, carnauba wax); cetyl palmitate (spermaceti)

2011 Oxford University Press

Phospholipids

- Amphipathic polar head (phosphate, other polar or charged groups); hydrophobic fatty acids (nonpolar tail)
- Act in membrane formation, emulsification, and as a surfactant
 - Micelle Spontaneously rearrange into ordered structures when suspended in water

Two types of phospholipids:

- •Sphingomyelins contain sphingosine instead of glycerol (also classified as sphingolipids)
 - Abundant in nervous system
- Phosphoglycerides contain a glycerol, fatty acids, phosphate, an alcohol
 - Simplest phosphatidic acid composed of glycerol-3-phosphate and two fatty acids
 - Phosphatidyl ethanolamine (cephalin) brain & nerve tissue
 - Phosphatidylcholine (lecithin) major part of membranes surrounding cells
 - Diphosphatidyl glycerol (cardiolipin) inner mitochondrial membrane

Figure 11.11 Phospholipases

 Phospholipases- hydrolyze ester bonds in glycerophospholipid molecules

Three major functions

- •Membrane remodeling—adjust membrane flexibility or repair a damaged fatty acid
- •Signal Transduction—phospholipid hydrolysis initiates the signal transduction by numerous hormones
- Digestion—pancreatic phospholipases degrade dietary phospholipids in the small intestine
- Toxic Phospholipases—various organisms use membranedegrading phospholipases as a means of inflicting damage
 Bacterial α-toxin and necrosis from snake venom (PLA₂)

From McKee and McKee, Biochemistry, 5th Edition, \odot 2011 Oxford University Press

Sphingolipids - important components of animal and plant membranes Ceramide – fatty acid linked to amino group of sphingosine (long-chain amino alcohol) Abundant in nervous system Sphingomyelin – primary alcohol group esterified to phosphoric acid esterified to amino alcohol •Abundant in the myelin sheath of nerve cells

CH,OH c = 0HO NH OH CH_OH CH,OH NH OH H C = 0CH3 OH CH₂CNH СНОН COO CHOH CH,OH

Glycolipids

Glycolipids

- Carbohydrate bound to alcohol group of lipid by O-glycosidic bond
- •Glycosphingolipids ceramide without P is parent compound
- •Most important classes

Figure 11.14a Selected

- •Cerebrosides have a monosaccharide for their head group
 - •Galactocerebroside found in brain cell membranes
 - •Sulfatides sulfated cerebroside, negative charge at physiological pH
- •Gangliosides possess oligosaccharide groups; occur in most animal tissues and G_{M2} is involved in Tay-Sachs disease
- •Found as markers on cell membranes play a large role in tissue & organ specificity

From McKee and McKee, *Biochemistry*, 5th Edition, © 2011 Oxford University Press

 Isoprenoids - repeating five-carbon structural units (isoprene units)

•Terpenes - classified by the number of isoprene units

 Monoterpenes (used in perfumes), sesquiterpines (e.g., citronella), tetraterpenes (e.g., carotenoids)

•Carotenoids are the orange pigments found in plants

•Mixed terpenoids consist of a nonterpene group attached to the isoprenoid group (prenyl groups)

Include vitamin K and vitamin E

 Steroids – derivative of terpenes, fused-ring structure of 3 6membered rings, 1 5-membered ring

Sex hormones – regulate development of primary and secondary sex charateristics

CH₃ CHCH₂CH₂CH₂CH₂CH(CH₃)₂ H₃C **Testosterone** – produced in D H₃C 2 Η testes, male Η Η HO characteristics H Cholesterol **Estradiol** – produced in H₂C ovaries, female CH₃ OH CH₃ OH characteristics CH_3 •**Progesterone** – precursor H_3C H_3C for testosterone Estradiol Progesterone Testosterone

- •Cholesterol classified as a sterol, because C-3 is oxidized to a hydroxyl group
 - Essential in animal membranes; a precursor of all steroid hormones, vitamin D, and bile salts
 - •Usually stored in cells as a fatty acid ester
 - Highly hydrophobic
 - Atherosclerosis blocked blood vessels

Figure 11.21 Plasma Lipoproteins

- **Lipoproteins** protein covalently linked to lipid groups
 - Transport lipid molecules through bloodstream from organ to organ
 - •Apolipoproteins protein component are synthesized in liver or intestine
 - Five classes of apolipoproteins (A, B, C, D, and E)
 - Differentiated by types of lipoproteins with different ratios of lipid and protein components
 - •Four clases of plasma lipotroteins
 - Chylomicron, LDL, VLDL, HDL

Lipoproteins are classified according to their density:

- Chylomicrons large lipoproteins; extremely low density; transport triacylglycerol and cholesteryl esters; synthesized in the intestines
- Very low density lipoproteins (VLDL) synthesized in the liver and transport lipids to the tissues
- Low density lipoproteins (LDL) principle transporters of cholesterol and cholesteryl esters to tissues
- •High density lipoprotein (HDL) protein-rich particle produced in the liver and intestine; may be a scavenger of excess cholesterol from membranes
 - Scavenges excess cholesteryl esters that are produced by lecithin:cholesterol acetyltransferase
 - •Transports to liver converted to bile acids
 - Good cholesterol

TABLE 11.5 Chemical Composition of Some Cell Membranes

Membrane	Protein (%)	Lipid (%)	Carbohydrate (%)
Human erythrocyte plasma membrane	49	43	8
Mouse liver cell plasma membrane	46	54	2–4
Amoeba plasma membrane	54	42	4
Mitochondrial inner membrane	76	24	1–2
Spinach chloroplast lamellar membrane	70	30	6
Halobacterium purple membrane	75	25	0

Source: G. Guidotti, Membrane Proteins, Annu. Rev. Biochem. 41:731, 1972.

•Membrane - noncovalent heteropolymer of lipid bilayer and associated proteins

Membrane Structure

 Proportions of lipid, protein, and carbohydrate vary considerably among cell types and organelles

Figure 11.25 Lateral Rotation Diffusion in Biological Membranes

Fluid Mosaic Model – accepted description of biological membranes

Phospholipids – structural component; active agents on surface

•Largely responsible for many membrane properties

•Fluidity – lateral motion of components in membrane

Proteins 'float' & move in it's plane

•Mosaic -2 components exist side by side

No covalent bonds between proteins & lipids

•Flipase - movement of phospholipids from one side of a membrane to other

- •Fluidity depends on unsaturated fatty acids and cholesterol
 - •Higher unsaturated fat greater fluidity

 Cholesterol contributes to stability with its rigid ring system; fluidity with its flexible hydrocarbon tail

Figure 11.24 Diagrammatic View of a Lipid Bilayer

•Membrane Proteins—facilitate movement of molecules across membrane; peripheral or integral

- •**Peripheral** loosely bond to outer membrane
- •Integral embedded in or pass through membrane

Figure 11.30 Transport across Membranes

Membrane Function

- •Membrane transport getting things in and out
- Catalysis reactions on membrane
- **Receptor** signals biochemical responses

Figure 11.30 Transport across Membranes

Passive transport - no energy input, down concentration gradient

•Simple diffusion - small molecule or ion

•Facilitated diffusion – uses carrier or channel protein

 Active transport - uses energy to transport molecules against a concentration gradient

•**Primary** – linked to hydrolysis of ATP

 Secondary – driven by concentration gradients generated by primary active transport

From McKee and McKee, Biochemistry, 5th Edition, © 2011 Oxford University Press

Passive diffusion

- Simple diffusion propulsion of each solute by random molecular motion from high concentration to low concentration
 - •Diffusion of gases O_2 and CO_2 across membranes is proportional to their concentration gradients

Does not require a protein channel

- •Facilitated diffusion channel proteins to move large or charged molecules down their concentration gradient
 - Examples include chemically gated Na⁺ channel and voltage-gated K⁺ channel

Primary active transport – Na⁺/K⁺ ion pump

- Sodium ions out, potassium ions in
- ■Na⁺-K⁺ ATPase provides energy

■Assumes 2 conformations – E₁ and E₂

Figure 11.31 The Na⁺-K⁺ ATPase and Glucose Transport

 Secondary active transport - concentration gradients formed by primary active transport are used to move other substances across the membrane

 Na⁺-K⁺ ATPase pump in the kidney drives the movement of D-glucose against its concentration gradient

From McKee and McKee, Biochemistry, 5th Edition, © 2011 Oxford University Press

Figure 11.33 The Cystic Fibrosis Transmembrane Regulator (CFTR)

•Cystic fibrosis - fatal autosomal recessive genetic disorder

•cystic fibrosis transmembrane conductance regulator (CFTR) is missing or defective

- •Retention of Cl⁻ in cells
- •Missing Phe⁵⁰⁸ causes folding errors

•Membrane Receptors - mechanisms by which cells monitor and respond to changes in their environment Chemical signals bind to membrane receptors in multicellular organisms for intracellular communication •Chemical signal molecules – hormones, neurotransmitters •Other receptors are involved in <u>cell-cell recognition</u> •Lymphocytes bind to cell surface of virus-infected cells Binding of ligand to membrane receptor causes a conformational change and programmed response Binding acetyl-choline to acetylcholine receptor opens a cation channel

Involved in embryonic and fetal development

- •Low-density lipoprotein receptor responsible for uptake of cholesterol-containing lipoproteins into cells
 - •Glycoprotein found on the surface of many cells
 - Number of receptors increases in response to a need for cholesterol or steroid hormones
 - Receptor number varies from 15,000 to 70,000, depending on need
 - •Familial hypercholesterolemia Missing or defective receptor
 - •Often caused by a failure to synthesize the receptor
 - Results in increased levels of cholesterol in the blood
 - Leads to heart attacks during childhood or early adolescence