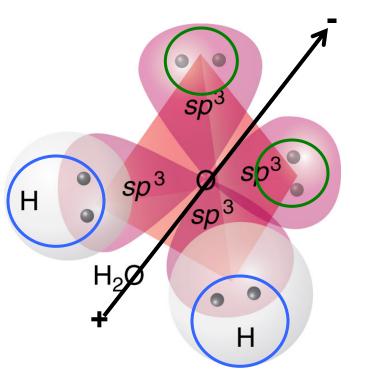
Water: The Matrix of Life

Chapter 3

Overview


- Water, water everywhere,; not a drop to drink
 - Only 3% of world's water is fresh
- How has this happened
 - □ Consumption resulting from how environment inhabited
 - Deforestation disrupts water cycle
 - Plants transpire fresh water, fresh water evaporates from soil
 - Deforestation removes plants therefore erodes soil
- Earth's water supply is why we exist
 - \Box Life arose from *primordial pudding*
 - First bio-molecules formed,
 combined into macromolecules

•Water's – matrix of life; major role as solvent

- Chemical stability & polarity
 - •Key to solvent properties
- Role as a biochemical reactant
 - Hydrolysis, dehydration,
- Hydration structured water
 - Stabilization & function of macromolecules

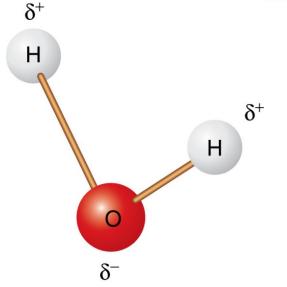
Section 3.1: Molecular Structure of Water

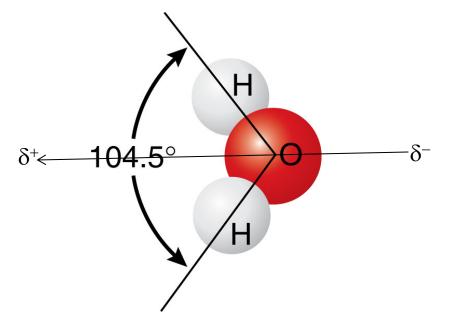
Composition: 2H, 10
Tetrahedral geometry: sp³ hybridization
Oxygen is more electronegative than hydrogen
Polar bonds; dipoles & hydrogen bonds

Figure 3.2 Tetrahedral

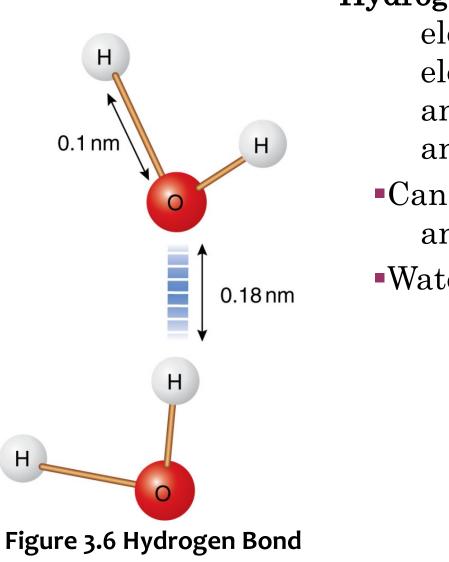
Structure of Water

Section 3.1: Molecular Structure of Water

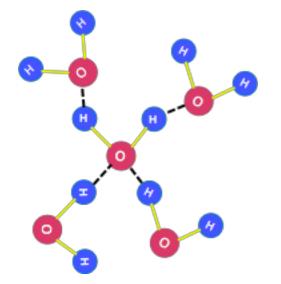

Electronegativity – measure of force of an atom's attraction for


electrons is shares

Electronegativities of Selected Elements


Element	Electronegativity*
Oxygen	3.5
Nitrogen	3.0
Sulfur	2.6
Carbon	2.5
Phosphorus	2.2
Hydrogen	2.1

* Electronegativity values are relative, and are chosen to be positive numbers ranging from less than 1 for some metals to 4 for fluorine.


Section 3.1: Molecular Structure of Water

•Hydrogen bond: relatively strong electrostatic bond between electron-deficient H of one water and unshared electrons of O on another

 Can occur with oxygen, nitrogen, and fluorine

•Water can form 4 hydrogen bonds

Section 3.2: Noncovalent Bonding

TABLE 3.1Bond Strengths of Bonds Typically Found in Living
Organisms*

	Bond S	trength
Bond Type	kcal/mol	kJ/mol*
Covalent	>50	>210
Noncovalent		
Ionic interactions [†]	1–20	4-80
Van der Waals forces	<1–2.7	<4-11.3
Mixed: hydrogen bonds	3–7	12–29

* The actual strength varies considerably with the identity of the interacting species. † 1 cal = 4.184 J.

Noncovalent interactions are electrostatic

•Weak individually, play vital role in biomolecules (cumulative effects)

Three most important noncolvalent bonds:

- Ionic interactions
- •Van der Waals forces
- Hydrogen bonds

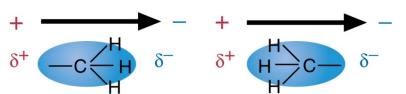
•Ionic Interactions – "Like dissolves like"

- •Oppositely charged ions attract one another
 - Ionic compounds NaCl
 - •Ion-dipole interaction KCl dissolved in H_2O
 - Dipole-dipole interactions Low-molecular weight polar covalent compounds C_2H_5OH (ethanol) & CH_3COCH_3 (acetone)
- Ionized amino acid side chains
 - •Glutamic acid $-CH_2CH_2COO^-$
 - Lysine -CH₂CH₂CH₂CH₂NH₃+
 - ■Salt bridges: -COO⁻ +H₂N-
- •Repulsive forces important in biological processes
 - Protein folding, enzyme catalysis, molecular recognition

Section 3.2: Noncovalent Bonding


 Occur between neutral, permanent, and/or induced dipoles

Three types:


- Dipole-dipole interactionsBetween 2 permanent dipoles
- Dipole-induced dipole interactions
 - Between permanent dipole/transient dipole
- Induced dipole-induced dipole interactions
 - Between transient dipoles from electron cloud overlap

From McKee and McKee, Biochemistry, 5th Edition, © 2011 by Oxford University Press

(b) Dipole-induced dipole interactions

(c) Induced dipole-induced dipole interactions

Figure 3.8 Dipolar Interactions

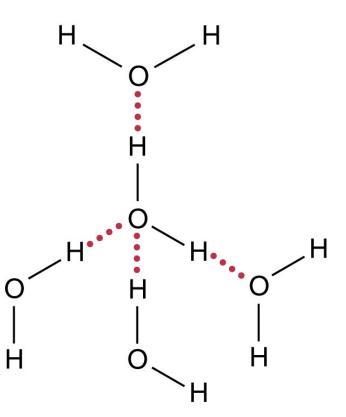


Figure 3.7 Tetrahedral Aggregate of Water Molecules

Hydrogen Bonds

- Electron-deficient hydrogen is weakly attracted to unshared electrons of another oxygen or nitrogen
- Large numbers of hydrogen bonds lead to extended network

Section 3.3: Thermal Properties of Water

TABLE 3.2Melting and Boiling Points of Water and Three Other
Group VI Hydrogen-Containing Compounds

Name	Formula	Molecular Weight (D)*	Melting Point (°C)	Boiling Point (°C)
Water	H_2O	18	0	100
Hydrogen sulfide	H_2S	34	-85.5	-60.7
Hydrogen selenide	H_2Se	81	-50.4	-41.5
Hydrogen telluride	H ₂ Te	129.6	-49	-2

* I dalton (D) = 1 atomic mass unit (amu).

Melting and boiling points are exceptionally high due to hydrogen bonding

- Each water molecule can form four hydrogen bonds with other water molecules
- Extended network of hydrogen bonds requires more energy to change state

Section 3.3: Thermal Properties of Water

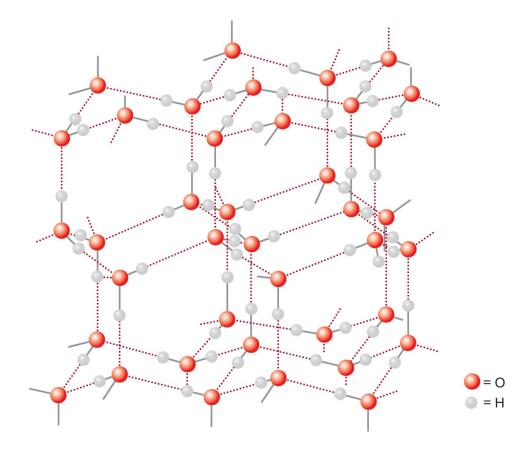


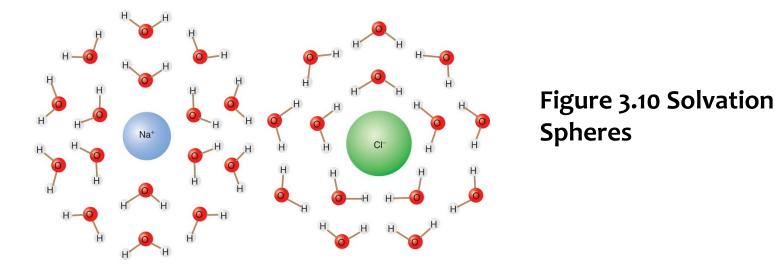
Figure 3.9 Hydrogen Bonding Between Water Molecules in Ice

Maximum number of hydrogen bonds form is frozen into ice

•Open, less-dense structure

Section 3.3: Thermal Properties of Water

TABLE 3.3Heat of Fusion of Water and Two Other Group VIHydrogen-Containing Compounds


Name	Formula	Molecular Weight (D)	Heat of Fusion* cal/g	J/g
Water	H_2O	18	80	335
Hydrogen sulfide	H_2S	34	16.7	69.9
Hydrogen selenide	H ₂ Se	81	7.4	31

* The heat of fusion is the amount of heat required to change 1 g of a solid into a liquid at its melting point; 1 cal = 4.184 J.

Exceptionally high heat of fusion (melt) and heat of vaporization (vaporize)

•High heat capacity – energy added or removed to change temperature by 1C^o

•Helps to maintain an organism's internal temperature

Ideal biological solvent

- Hydrophilic Molecules water loving
- Hydropholic molecules water fearing
 - **Solvation spheres** dissolve ionic and polar substances
 - •Shells of water molecules form around ions
 - •Substance positive sphere large, $Na^+ > Cl^-$
 - •Ion diameter smaller diameter larger hydration sphere

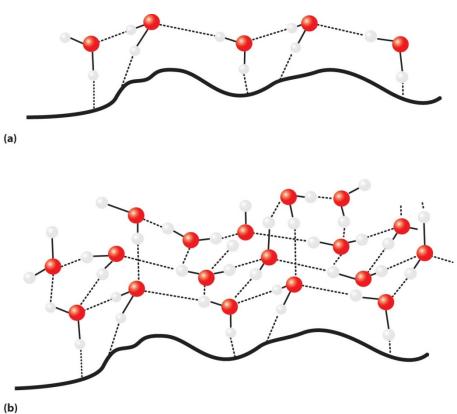
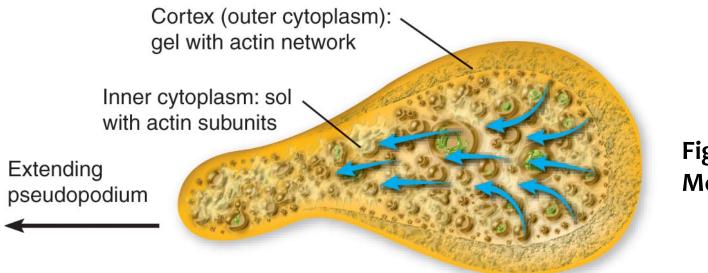



Figure 3.11 Diagrammatic **View of Structured Water**

Structured Water

Rarely free flowing

•Associated with macromolecules and other cellular components •Forms complex threedimensional bridges between cellular components

Figure 3.12 Amoeboid Motion

Sol-Gel Transitions

- Cytoplasm has properties of a gel (colloidal mixture)
- Transition from gel to sol important in cell movement
 - Amoeboid motion provides an example of regulated, cellular, sol-gel transitions

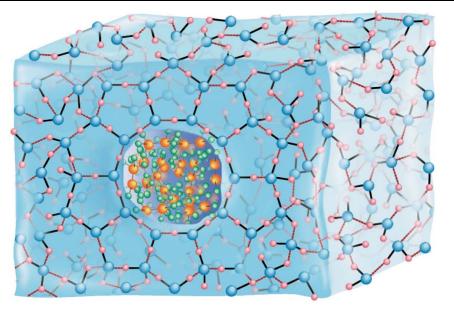
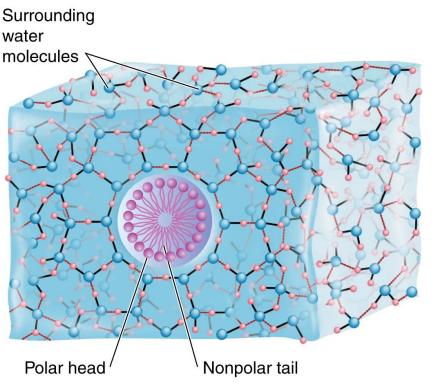



Figure 3.13 The Hydrophobic Effect

Hydrophobic Effect

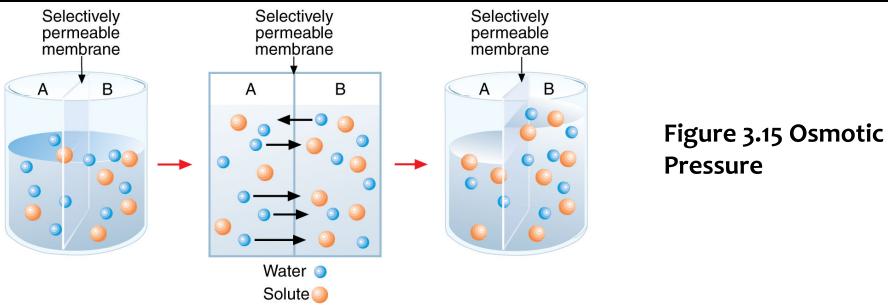
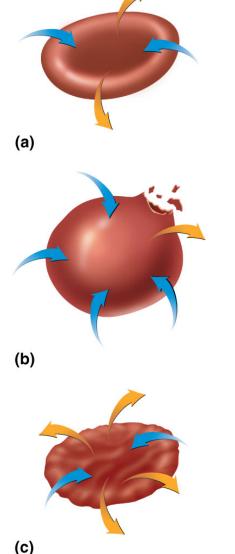
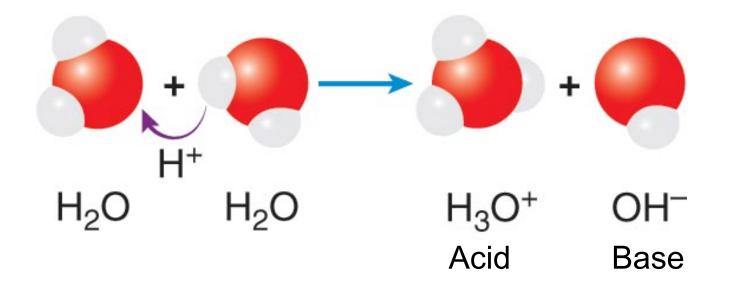

- •Hydrophobic molecules– coalesce into droplets
- Stabilized by van der Waals interactions
 - •Generation of stable lipid membranes
 - Contributes to fidelity of protein folding

Figure 3.14 Formation of Micelles


Amphipathic Molecules

- Both hydrophobic & hydrophilic
- •Form **micelles** when mixed with water
- Important feature for formation of cellular membranes

Osmotic Pressure


- •Osmosis spontaneous passage of solvent molecules through a semipermeable membrane
 - •Moves down concentration gradient hi to low
- Osmotic pressure pressure required to stop the net flow across the membrane
 - •Equilibrium no net flow from side to side
 - •Osmotic pressure depends on solute concentration

- Cells may gain or lose water because of the environmental solute concentration
- Consequences of solute concentration differences between the cell and the environment
 - **Isotonic solution** solute concentration equal
 - •Hypotonic solution solute concentration lower outside; water in; lysis
 - •Hypertonic solution solute concentration higher outside; water out; crenation

Figure 3.17 Effect of Solute Concentration on Animal Cells

Amphoteric – acts as acid and base
 Acid – proton donor; Base – proton acceptor
 H₂O ⇔ H⁺ + OH⁻ (reversible)



Equilibrium constant, $K_{eq} = [products] / [reactants]$

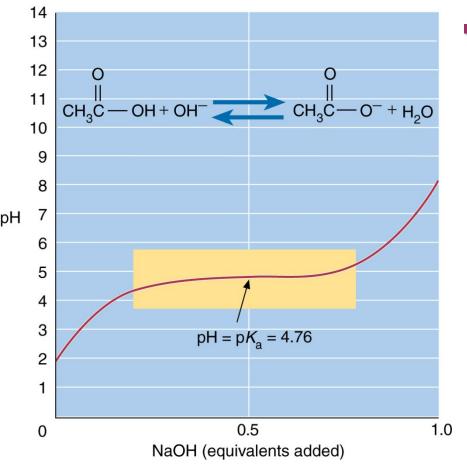
- $H_2O \Leftrightarrow H^+ + OH^-$
 - $K_{eq} = [H^+][OH^-] / [H_2O]$
 - $\bullet \mathbf{K}_{\mathrm{eq}}[\mathbf{H}_{2}\mathbf{O}] = [\mathbf{H}^{+}][\mathbf{O}\mathbf{H}^{-}]$
- •Ion product of water is $K_{eq}[H_2O]$ or K_w
 - $\bullet K_w = [H^+][OH^-]$
 - •K_w at 25°C and 1 atm pressure = $1.0 \ge 10^{-14}$
 - ${}^{\bullet}K_{w}$ is temperature-dependent; therefore, pH is temperature-dependent as well

Acids, Bases, and pH

- •Most organic molecules are **weak acids** or **weak bases**
 - ■Reaction of weak acid in water $HA(aq) + H_2O(l) \leftarrow \rightarrow H_3O^+(aq) + A^-(aq)$ w.a. c.b.
 - Measure of weak acid strength K_a K_a = [H₃O⁺][A⁻] /HA]
 pK_a = -logK_a Lower pK_a stronger acid

pH scale reflects hydrogen ion concentration **p**H=-log[H⁺]

Figure 3.19 The pH Scale and the pH Values of Common Fluids


TABLE 3.4Dissociation Constants and pKa Values for CommonWeak Acids*

Acid	НА	\mathbf{A}^{-}	K _a	pK _a
Acetic acid	CH ₃ COOH	CH ₃ COO ⁻	1.76×10^{-5}	4.76
Carbonic acid	H_2CO_3	HCO_3^-	$4.5 imes 10^{-7}$	6.35
Bicarbonate	HCO_3^-	CO_{3}^{2-}	$5.61 imes 10^{-11}$	10.33
Lactic acid	CH ₃ CHCOOH OH	CH ₃ CHCOO ⁻ OH	1.38×10^{-4}	3.86
Phosphoric acid	H ₃ PO ₄	$H_2PO_4^-$	7.25×10^{-3}	2.14
Dihydrogen phosphate	$H_2PO_4^-$	HPO_4^{2-}	$6.31 imes 10^{-8}$	7.20

* Equilibrium constants should be expressed in terms of activities rather than concentrations (activity is the effective concentration of a substance in a solution). However, in dilute solutions, concentrations may be substituted for activities with reasonable accuracy.

Buffers – resist changes in pH

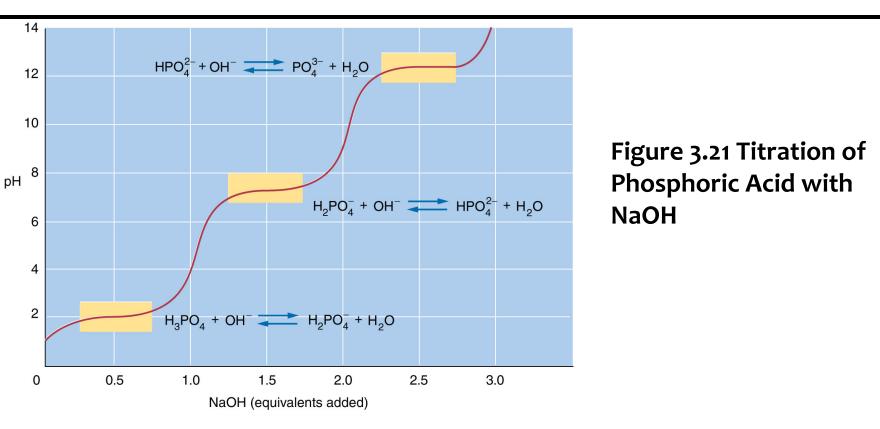
- Regulation of pH is universal and essential for all living things, normal blood pH 7.4
- Certain diseases can cause changes in pH that can be disastrous
 - ■**Acidosis** pH <7.35
 - ■Alkalosis pH >7.45
- ■Composed of a weak acid and its conjugate base $CH_3COOH + H_2O \rightarrow H_3O^+ + CH_3COO^$ weak acid conjugate base
 - ✓ Added base reacts with weak acid; added acid reacts with conjugate base

Buffers Capacity

- Molar concentration of weak acid-conjugate base pair
- Most effective equal parts weak acid and conjugate base
- Best buffering occurs 1 pH unit above and below the pK_a

Figure 3.20 Titration of Acetic Acid with NaOH

Henderson-Hasselbalch Equation


 Establishes the relationship between pH and pK_a for selecting a buffer

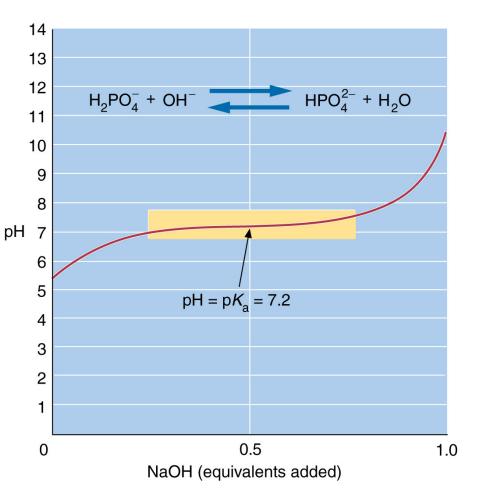
Henderson-Hasselbalch Equation

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

 Optimum buffer should have pK_a equal to pH being maintained

-Best buffering occurs 1 pH unit above and below the $\ensuremath{pK_a}$

Weak Acids with Multiple Ionizable Groups


- Each has its own pK_a
- Protons are released in a stepwise fashion

Physiological Buffers

 Buffers adapted to solve specific physiological problems within the body

Bicarbonate Buffer

 One of the most important buffers in the blood CO₂ + H₂O ← → H⁺ + HCO₃⁻ (bicarbonate)
 Carbonic anhydrase is the enzyme responsible

Figure 3.22 Titration of H₂PO₄⁻ by Strong Base

Phosphate Buffer

- Important buffer for intracellular fluids
- Consists of H₂PO₄⁻/HPO₄²⁻ (weak acid/conjugate base)
 H₂PO₄⁻ → H⁺ + HPO₄²⁻

Protein Buffer

 Proteins are a significant source of buffering capacity (e.g., hemoglobin)