Section 2.4 Solutions

1. Directly \Rightarrow multiply, with one letter after k,
 square of x is the same as x^2
 \[\text{Answer: } W = kx^2 \]

3. Inversely \Rightarrow fraction, with k in the numerator,
 cube of x is the same as x^3
 \[\text{Answer: } y = \frac{k}{x^3} \]

5. Directly proportional to the square of x $(x^2) \Rightarrow kx^2$
 Inversely proportional to the cube of y $(y^3) \Rightarrow \frac{k}{y^3}$
 Write answer with a single k
 \[\text{Answer: } Q = \frac{kx^2}{y^3} \]

7. Jointly \Rightarrow multiply with two letters after k,
 square of x is the same as x^2,
 cube of y is the same as y^3
 \[\text{Answer: } M = kx^2y^3 \]

9. Directly \Rightarrow multiply with one letter after k,
 square of Time (T) is the same as T^2
 \[\text{Answer: } D = kT^2 \]
11. Inversely \(\rightarrow\) fraction, with \(k\) in the numerator
Answer: \(W = \frac{k}{L}\)

13. Directly as temperature \(\rightarrow\) \(kT\)
Inversely as pressure \(\rightarrow\) \(\frac{k}{p}\)
Write answer with a single \(k\)
Answer: \(V = \frac{kt}{p}\)

15. Create an equation with \(k\):
\[y = kx^2\]
let \(y = 45\) and \(x = 3\)
\[45 = k(3)^2\]
\[45 = 9k\]
\[\frac{45}{9} = \frac{9k}{9}\]
\[5 = k\]

Answer: \(k = 5\)

17. Create an equation with \(k\):
\[T = \frac{k}{Q}\]
let \(Q = 5\) and \(T = 10\)
\[10 = \frac{k}{5}\]
\[\frac{10}{1} = \frac{k}{5}\]
\[1 \cdot k = 10 \cdot 5\]
\[k = 50\]

Answer: \(k = 50\)
19. Create an equation with k:

$N = kxy$

let $x = 2$, $y = 3$, and $N = 42$

$42 = k \cdot 2 \cdot 3$

$42 = 6k$

$\frac{42}{6} = \frac{6k}{6}$

$7 = k$

Answer: $k = 7$

21. Create an equation with k:

$Y = kx^3$

let $Y = 24$ and $x = 2$

$24 = k(2)^3$

$24 = 8k$

$\frac{24}{8} = \frac{8k}{8}$

$3 = k$

Now let $k = 3$ and $x = 5$

$Y = 3 \cdot (5)^3$

$Y = 375$

Answer: $Y = 375$
23. Create an equation with \(k \):

\[W = \frac{k}{q} \]

Let \(W = 10 \) and \(q = 5 \)

\[10 = \frac{k}{5} \]

\[\frac{10}{1} = \frac{k}{5} \]

\[50 = k \]

Let \(k = 50 \) and \(q = 3 \)

\[W = \frac{50}{3} \]

Answer: \(W = \frac{50}{3} \)

25. Create an equation with \(k \):

\[Y = kxz^2 \]

Let \(Y = 48 \), \(z = 2 \), and \(x = 3 \)

\[48 = k(3)(2)^2 \]

\[48 = k(3)(4) \]

\[48 = 12k \]

\[\frac{12}{12} \]

\[4 = k \]

Let \(k = 4 \), \(x = 3 \), and \(z = 4 \)

\[Y = 4(3)(4)^2 \]

\[Y = 4(3)(16) \]

\[Y = 192 \]

Answer: \(Y = 192 \)
27. Create an equation with K:
\[
D = \frac{K}{p}
\]
Let $p = 2.75$ and $D = 156$
\[
156 = \frac{K}{2.75}
\]
\[
\frac{156}{1} = \frac{K}{2.75}
\]
\[
1 \cdot K = (2.75)(156)
\]
\[
K = 429
\]
Let $K = 429$ and $p = 3.00$
\[
D = \frac{429}{3.00}
\]
\[
D = 143
\]

Answer: $D = 143$ bags of candy

29. Create an equation with K:
\[
V = \frac{KT}{p}
\]
Let $p = 0.75$, $T = 294$ and $V = 8000$
\[
8000 = \frac{K(294)}{0.75}
\]
\[
8000 = \frac{392K}{392}
\]
\[
\frac{8000}{392} = K
\]
Note: Use $K = 2041$

Let $K = 20.41$, $p = 1.5$, and $T = 300$
\[
V = \frac{(20.41)(300)}{1.5}
\]
\[
V = 4082
\]

Answer: $V = 4082$ cubic centimeters
31. Create an equation with K:

\[D = K + a \]

let \(t = 1 \) and \(D = 8 \)

\[8 = K(1)^2 \]

\[8 = K \]

let \(K = 8 \) and \(t = 3 \)

\[D = 8(3)^2 \]

\[D = 8(9) \]

\[D = 72 \]

Answer: \(D = 72 \) feet

33. Create an equation with K:

\[D = kV^2 \]

let \(V = \frac{1}{4} \) and \(D = 0.02 \)

\[0.02 = K \left(\frac{1}{4} \right)^2 \]

\[0.02 = K \left(\frac{1}{16} \right) \]

\[0.02 = 0.00625K \]

\[\frac{0.02}{0.00625} = \frac{0.00625K}{0.00625} \]

\[0.32 = K \]

let \(K = 0.32 \) and \(V = 2 \)

\[D = 0.32(2)^2 \]

\[D = 0.32(4) \]

\[D = 1.28 \]

Answer: \(D = 1.28 \) inches in diameter