Section 3.5 Solutions
#1 – 56: Let \(f(x) = x^2 \), \(g(x) = \sqrt{x} \), \(h(x) = |x| \), \(k(x) = \sqrt[3]{x} \), \(m(x) = x^3 \)
a) find the requested function
b) describe the transformation from the original function.

1a) \(h(x + 2) = |x + 2| \)
 1b) shifts left 2
 put +2 inside absolute value since it is inside the parenthesis

3a) \(h(x + 5) = |x + 5| \)
 3b) shifts left 5
 put +5 inside absolute value since it is inside the parenthesis

5a) \(f(x + 3) = (x + 3)^2 \)
 5b) shifts left 3
 put +3 inside a parenthesis since it is inside the parenthesis

7a) \(f(x + 6) = (x + 6)^2 \)
 7b) shifts left 6
 put +6 inside a parenthesis since it is inside the parenthesis

9a) \(h(x - 2) = |x - 2| \)
 9b) shifts right 2
 put -2 inside absolute value since it is inside the parenthesis

11a) \(h(x - 5) = |x - 5| \)
 11b) shifts right 5
 put -5 inside absolute value since it is inside the parenthesis

13a) \(g(x - 3) = \sqrt{x - 3} \)
 13b) shifts right 3
 put -5 under the square root since it is inside the parenthesis

15a) \(g(x - 4) = \sqrt{x - 4} \)
 15b) shifts right 4
 put -4 under the square root since it is inside the parenthesis

17a) \(f(x) + 2 = x^2 + 2 \)
 17b) shifts up 2
 the +2 goes after the \(x^2 \) since it is not in a parenthesis

19a) \(g(x) + 5 = \sqrt{x} + 5 \)
 19b) shifts up 5
 the +5 goes after the square root since it is not in a parenthesis

21a) \(h(x) - 3 = |x| - 3 \)
 21b) shifts down 3
 the -3 goes after the absolute value since it is not in a parenthesis

23a) \(k(x) - 6 = \sqrt[3]{x} - 6 \)
 23b) shifts down 6
 the -6 goes after the cubed root since it is not in a parenthesis

25a) \(h(x + 2) + 1 = |x + 2| + 1 \)
 25b) shifts left 2, up 1
 the +2 goes inside the absolute value since it is inside the parenthesis, the +1 goes after since it is not in the parenthesis
27a) $h(x + 5) - 1 = |x + 5| - 1$
27b) shifts left 5, down 1
the +5 goes inside the absolute value since it is inside the parenthesis, the -1 goes after since it is not in the parenthesis

29a) $g(x - 2) + 1 = \sqrt{x - 2} + 1$
29b) shifts right 2 up 1
put -2 under the square root since it is inside the parenthesis, the +1 goes after the square root since it is not in a parenthesis

31a) $g(x - 5) - 1 = \sqrt{x - 5} - 1$
31b) shifts right 5 down 1
the -5 goes under the square root since it is inside the parenthesis, the -1 goes after since it is not in the parenthesis

33a) $-k(x) = -\sqrt{x}$
33b) reflects over x-axis
the negative goes in front since it is not in the parenthesis

35a) $-h(x) = -|x|$
35b) reflects over x-axis
the negative goes in front since it is not in the parenthesis

37a) $k(-x) = \sqrt{-x}$
37b) reflects over y-axis
the negative goes under the cubed root since it is inside the parenthesis

39a) $h(-x) = |x| or just |x|$
39b) reflects over y-axis
the negative goes inside the absolute value since it is inside the parenthesis

41a) $-f(x + 2) + 1 = -(x + 2)^2 + 1$
41b) reflects over x-axis, shifts left 2 and up 1
the negative goes in front of the parenthesis since it is not inside the parenthesis, the +2 belongs inside the parenthesis since it is in the parenthesis, the +1 goes after since it is not in the parenthesis

43a) $-f(x + 5) - 1 = -(x + 5)^2 - 1$
43b) reflects over x-axis, shifts left 5 and down 1
the negative goes in front of the parenthesis since it is not inside the parenthesis, the +5 belongs inside the parenthesis since it is in the parenthesis, the -1 goes after since it is not in the parenthesis

45a) $-m(x - 2) + 1 = -(x - 2)^3 + 1$
45b) reflects over x-axis, shifts right 2, up 1
the negative goes in front of the parenthesis since it is not inside the parenthesis, the -2 belongs inside the parenthesis since it is in the parenthesis, the +1 goes after since it is not in the parenthesis

47a) $-m(x - 5) - 1 = -(x - 5)^3 - 1$
47b) reflects over x-axis, shifts right 5, down 1
the negative goes in front of the parenthesis since it is not inside the parenthesis, the -5 belongs inside the parenthesis since it is in the parenthesis, the -1 goes after since it is not in the parenthesis

49a) $2f(x) = 2x^2$
49b) stretches
the 2 goes in front since it is not in a parenthesis
numbers greater than 1 multiplied by a function stretch the graph
53a) \(\frac{1}{2} h(x) = \frac{1}{2} |x| \)
53b) compresses
the \(\frac{1}{2} \) goes in front of the absolute value since it is not in the parenthesis

55a) \(-\frac{1}{2} h(x) = -\frac{1}{2} |x| \)
55b) reflects over x axis, and compresses
the \(-1/2\) goes in front since it is not in the parenthesis
fractions between 0 and 1 compress, negative numbers reflect over x-axis

57) \(f(x - 2) \) (shift each point 2 to the right)

59) \(f(x) - 2 \) shift each point down 2
Section 3.5 Answers

61) \(f(x-2) + 1 \) shift each point right 2 and up 1

63) \(-f(x) \) reflect over x-axis by changing y-coordinate of each point
Section 3.5 Answers

65) \(f(x - 1) \) shift each point to the right 1

67) \(f(x) - 1 \) shift each point down 1
Section 3.5 Answers

69) \(f(x - 1) + 2 \) shift each point 1 to the right and up 2

71) \(f(-x) \) reflect over y-axis by changing the sign of each \(x \)

This will give you the original graph back. The original graph is symmetric to the y-axis, so reflecting the graph over the y-axis produces the original graph again.