VSEPR Theory (Molecular Shapes)

$$
A=\text { the central atom, } X=\text { an atom bonded to } A, E=a \text { lone pair on } A
$$

Note: There are lone pairs on X or other atoms, but we don't care. We are interested in only the electron densities or domains around atom A .

Total Domains	Generic Formula	Picture	Bonded Atoms	Lone Pairs	Molecular Shape	Electron Geometry	Example	Hybridi -zation	Bond Angles
1	AX	A-X	1	0	Linear	Linear	H_{2}	S	180
2	AX_{2}	$x-A-x$	2	0	Linear	Linear	CO_{2}	sp	180
	AXE		1	1	Linear	Linear	CN^{-}		
3	AX_{3}		3	0	Trigonal planar	Trigonal planar	AlBr_{3}	$s p^{2}$	120
	$\mathrm{AX}_{2} \mathrm{E}$	0	2	1	Bent	Trigonal planar	SnCl_{2}		
	AXE_{2}	$x-A \rho$	1	2	Linear	Trigonal planar	O_{2}		
4	AX_{4}		4	0	Tetrahedral	Tetrahedral	SiCl_{4}	$s p^{3}$	109.5
	$\mathrm{AX}_{3} \mathrm{E}$	0	3	1	Trigonal pyramid	Tetrahedral	PH_{3}		
	$\mathrm{AX}_{2} \mathrm{E}_{2}$		2	2	Bent	Tetrahedral	SeBr_{2}		
	AXE_{3}		1	3	Linear	Tetrahedral	Cl_{2}		

Total Domains	Generic Formula	Picture	Bonded Atoms	Lone Pairs	Molecular Shape	Electron Geometry	Example	Hybridi -zation	Bond Angles
5	AX_{5}		5	0	Trigonal bipyramid	Trigonal bipyramid	AsF_{5}	$s p^{3} \mathrm{~d}$	$\begin{gathered} 90 \\ \text { and } \\ 120 \end{gathered}$
	$\mathrm{AX}_{4} \mathrm{E}$		4	1	See Saw	Trigonal bipyramid	SeH_{4}		
	$\mathrm{AX}_{3} \mathrm{E}_{2}$		3	2	T shape	Trigonal bipyramid	ICl_{3}		
	$\mathrm{AX}_{2} \mathrm{E}_{3}$		2	3	Linear	Trigonal bipyramid	$\mathrm{BrF}_{2}{ }^{-}$		
6	AX_{6}		6	0	Octahedral	Octahedral	SeCl_{6}	$s p^{3} d^{2}$	90
	$\mathrm{AX}_{5} \mathrm{E}$		5	1	Square pyramid	Octahedral	IF_{5}		
	$\mathrm{AX}_{4} \mathrm{E}_{2}$		4	2	Square planar	Octahedral	XeF_{4}		

Notes 1. There are no stable $\mathrm{AXE}_{4}, \mathrm{AX}_{3} \mathrm{E}_{3}, \mathrm{AX}_{2} \mathrm{E}_{4}$ or AXE_{5} molecules.
2. All bonds are represented in this table as a line whether the bond is single, double, or triple.
3. Any atom bonded to the center atom counts as one domain, even if it is bonded by a double or triple bond. Count atoms and lone pairs to determine the number of domains, do not count bonds.
4. The number of bonded atoms plus lone pairs always adds up to the total number of domains.

