Chapter 5: The Periodic Table

CHM 130 GCC Chemistry

5.1 Classification of the Elements

Dimitri Mendeleev (1869) arranged elements in a table in order of increasing <u>mass</u>. He put elements with similar properties in the same column.

5.2 The Periodic Law

H. G. J. Moseley arranged elements in order of increasing *atomic number*.

Periodic Law – elements in the same column have similar properties

The Periodic Law

Neils Bohr's introduction of electron energy levels altered the shape of the Periodic Table.

The modern Periodic Table shows s, p, d and f sublevels.

5.3 Organization of the Periodic Table

A *horizontal row* is called a period.

A vertical column is called a group.

Elements in the same *group* exhibit similar properties.

Main Group (Representative) Elements: A Group

Transition Metals: B Group

Group Names of Elements

Group IA: alkali metals

Group IIA: alkaline earth metals

Group VIIA: halogens

Group VIIIA: noble gases

Group Names of Elements

- Transition Metals (B group)
- Inner Transition Metals (beneath the main body of Periodic Table)
 - lanthanide series: Ce-Lu, also called rare earth metals
 - actinide series: Th-Lr, all radioactive elements

Note: all elements \geq 93 are man-made in particle accelerators.

5.4 Atomic Size

- <u>Atomic Size</u>: average distance from nucleus to outermost electron
- Increases down a group/column
- As we go \downarrow , there are more energy levels and radium gets bigger
- <u>Increases from right to left</u> (←) across a period/row

Metallic Character

- Increases from right to left →
 - metals are on left-hand side
- Increases down a group ↓
 - For groups IVA and VA, we go from nonmetals (C & N) at the top to metals (Sn & Bi) at the bottom.
- Same snowman trend!
- Trend increases \downarrow and \rightarrow

5.5 Properties of Elements

- Elements in the same group typically have similar chemical behavior and physical properties
- For example,
 - Na reacts with Cl₂ to form NaCl
 - K reacts with Cl₂ to form KCl

Properties of Elements

- Ex. 1: Sodium reacts violently with water. Which other element(s) also will?
 - K Mg Al Li P
- Ex. 2: Chlorine reacts with hydrogen to form HCl. Give the formula when fluorine reacts with hydrogen.

5.7 Valence Electrons

- <u>Core electrons</u>: inner e⁻ in *filled electron levels*
- <u>Valence electrons</u>: s and p e⁻ in the *outer unfilled level*
- Valence electrons form chemical bonds and dictate and element's properties and chemical behavior.

Valence Electrons

• For Group A elements: Group # = # of valence electrons IA = 1 v.e. IIA = 2 v.e. IIIA = 3 v.e.

 $IVA = 4 \text{ v.e.} \qquad VA = 5 \text{ v.e.} \qquad VIA = 6 \text{ v.e.}$ $VIIA = 7 \text{ v.e.} \qquad VIIIA = 8 \text{ v.e.}$

• How many valence electrons do the following elements have?

Ca?

S?

Si? Kr? P? Na?

5.8 Writing Electron Dot Formulas

- 1. Write down the element symbol.
- 2. How many valence electrons?
- 3. Assume the atom has four sides, and put electrons with one electron per side before pairing. There are a maximum of 2 e⁻ on each side!

Let's try some on the board!

5.9 Ionization Energy

- **Ionization energy**: energy required to *remove* an electron from a neutral atom.
- IE increases up a group ↑
 - easier to remove electrons from a larger atom (e⁻'s are further from the nucleus)
- <u>IE increases left to right</u> →
- Metals have low IE's because they **want** to lose electrons to be like a noble gas
 - Nonmetal elements have high IE's because they would rather gain electrons.
- These trends are the opposite of the snowman

Ionization Energy

Which element in each group has the largest ionization energy?

- A) Cl, P, or Ca?
- B) Li, Rb, or Be?

5.10 Ion Formation

- Atoms gain or lose electrons to have same number of valence electrons as a noble gas.
- Noble gas: charge = 0; very stable, chemically inert, happy with 8 valence electrons (full s and p)
- Except He has full 1s only = 2 e- (He does not have 8 valence electrons!)

Ion Formation

• Metals lose electrons and become positively charged ions called **cations**

Group	Group IA metals	Group IIA metals	Group IIIA metals
Charge	+1	+2	+3
Example	Li+	Mg ²⁺	Al ³⁺

• magnesium ion can be shown as Mg⁺² or Mg²⁺.

• The 1 is omitted for +1 or -1

Ion Formation

• Nonmetals gain electrons and become negatively charged ions called **anions**

Group	Group VA nonmetals	Group VIA nonmetals	Group VIIA nonmetals
Charge	-3	-2	-1
Example	N ^{3–}	O ^{2–}	F-

What charge will ions of these elements have? lithium magnesium sulfur bromine nitrogen aluminum

Isoelectronic

Iso- = same

-electronic = electrons

Isoelectronic = 2 elements that have the same number of electrons and therefore the same electron configurations!

Electron Configuration of Ions

- + charge means less e than the atom (cations lose electrons)
- - charge means more e⁻ than the atom (anions gain electrons)
- Write the electron configuration of the neutral atom first, then remove the correct number of electrons for cations, or add electrons for anions.

Electron Configuration of Ions

1) Na⁺ is like Ne Na atom 1s²2s²2p⁶3s¹ Na⁺ (isoelectronic w/?)

- 2) Mg²⁺ is like ? Mg atom 1s²2s²2p⁶3s² Mg⁺² (isoelectronic w/?)
- 3) F⁻ is like ? F atom 1s²2s²2p⁵
 F⁻ (isoelectronic w/?)

lon	Isoelectronic with which Noble gas?	Electron Configuration
K+		
P ³⁻		
Cl-		
Ca ²⁺		

Answers

- They are all the same
- $1s^22s^22p^63s^23p^6$
- All isoelectronic with Argon

Coulomb's Law

- Law of physics published in 1783
- Basically describes how opposites attract.
- This is VERY important in chemistry as ions of opposite charge attract
- The electrostatic attraction between two charges is proportional to the charge magnitude (q) and inversely proportional to the distance (r) squared.
- $\mathbf{F} = k_{\mathrm{e}}(\mathbf{q}_1\mathbf{q}_2 / \mathbf{r}^2)$

Ch. 5 Self Test, p. 159

- Try numbers 2-4, 7-13, 15-17
- Answers in Appendix J