Name:KEY		Section:
	Chapter 7 Practice Worksheet:	

Covalent Bonds and Molecular Structure

1) How are ionic bonds and covalent bonds different?

from two atoms sharing electrons.

Ionic bonds result from the transfer of electrons from one atom to another; Covalent bonds result

2) Describe the relationship between the length of a bond and the strength of that bond.

Strength of a bond increases as the bond gets shorter (inverse relationship)

3) Identify the type(s) of bond(s) found in the following molecules:

a. CCl₄ ___covalent_____

b. Li₂O <u>ionic</u>

c. NF₃ ___covalent_____

d. CaSO₄ ___ionic and covalent_____

e. SO₂ <u>covalent</u>

f. Mg(OH)₂ ___ionic and covalent____

4) Define electronegativity.

Electronegativity is the ability for an atom in a molecule to attract electrons to itself.

5) Use electronegativity values to place the following elements in **increasing** order: F, N, H, P, Si, C, O

 $Si < H = P \approx C < N < O < F$

6) Determine if the bond between atoms in each example below is nonpolar covalent, polar covalent, or ionic.

a. H₂ ___npc____

e. NF __pc____

b. PCl ___pc____

f. MgO __ionic____

c. F₂ ___npc____

g. CH __npc____

d. NaBr ___ionic____

h. HCl __pc____

Name: _	KEY	Section:
---------	-----	----------

- 7) Draw Lewis Structures for the following molecules: (the descriptions below indicate the number and types of bonds on central atoms (first one listed except in H₂O; outer atoms have complete octets with lone pairs)
 - a. CO₂ (double bonds from C toeach O, no lone pairs)
 - b. BeCl₂ (single bond to each Cl, no lone pairs)
 - c. H₂O (single bond to O, 2 lone pairs on O)
 - d. BF₃ (single bonds to F, no lone pairs)
 - e. CCl₄ (single bonds to Cl, no lone pairs)
 - f. NH₃ (single bonds to H, 1 lone pair on N)
 - g. NO₃ (2 single bonds, 1 double bond, no lone pairs)
 - h. SO₃ (2 single bonds, 1 double bond, no lone pairs)
 - i. SO_3^{2-} (3 single bonds, 1 lone pair)

- j. NF₃ (3 single bonds, 1 lone pair)
- k. CO (triple bond, lone pair on C and O)
- 1. O₃ (1 single bond, 1 double bond,1 lone pair)
- m. CO₃²⁻ (2 single bonds, 1 double bond)
- n. SO₂ (1 single bond, 1 double bond,1 lone pair)
- o. PF₅ (5 single bonds, no lone pairs)
- p. PCl₅ (5 single bonds, no lone pairs)
- q. SF₆ (6 single bonds, no lone pairs)
- r. TeF₆ (6 single bonds, no lone pairs)
- 8) Which of the above compounds (in number 7) require resonance structures to describe the structure properly? Draw them.

g, h, l, m, and n

Name: _	_KEY	Section:
---------	------	----------

9) Which of the above compounds (in number 7) are exceptions to the octet rule?

10) Fill in the table below to determine the molecular geometry for the following molecules:

Formula	ABE formula	Number of edomains on central atom	# e domains/ # non-bonding domains on central atom	Electron- Domain Geometry (name)	Molecular Geometry (name)	Bond angle(s) on central atom
CO ₂	AB_2	2	2/0	Linear	Linear	180°
BeCl ₂	AB_2	2	2/0	Linear	Linear	180°
H ₂ O	AB_2E_2	4	2/2	Tetrahedral	Bent	<109.5°
BF ₃	AB_3	3	3/0	Trigonal planar	Trigonal planar	120°
CCl ₄	AB_4	4	4/0	Tetrahedral	Tetrahedral	109.5°
NH ₃	AB_3E_1	4	3/1	Tetrahedral	Trigonal pyramidal	<109.5°
NO ₃	AB_3	3	3/0	Trigonal planar	Trigonal planar	120°
SO ₃	AB_3	3	3/0	Trigonal planar	Trigonal planar	120°
SO ₃ ²⁻	AB_3E_1	4	3/1	Tetrahedral	Trigonal pyramidal	<109.5°
NF ₃	AB_3E_1	3	3/1	Tetrahedral	Trigonal pyramidal	<109.5°

Formula	ABE formula	Number of e ⁻ domains on central atom	# e domains/ # non-bonding domains on central atom	Electron- Domain Geometry	Molecular Geometry (name)	Bond angle(s) on central atom
<u>c</u> o	AB_1E_1	2	1/1	Linear	Linear	180°
O ₃	AB_2E_1	3	2/1	Trigonal planar	Bent	<120°
CO ₃ ² -	AB_3	3	3/0	Trigonal planar	Trigonal planar	120°
SO ₂	AB_2E_1	3	2/1	Trigonal planar	Bent	<120°
PF ₅	AB_5	5	5/0	Trigonal bipyramidal	Trigonal bipyramidal	120° and 90°
PCl ₅	AB_5	5	5/0	Trigonal bipyramidal	Trigonal bipyramidal	120° and 90°
SF ₆	AB_6	6	6/0	Octahedral	Octahedral	90°
TeF ₆	AB_6	6	6/0	Octahedral	Octahedral	90°

11) a. Identify the molecules in the table above that are polar.

- b. How many nonbonding pairs of electrons did the polar molecules have? __1 or 2_____
- c. How many nonbonding pairs of electrons did the nonpolar molecules have? __none____
- 12) Give one example of a polar molecule that has nonpolar bonds. ___O₃_____

Give one example of a nonpolar molecule that has polar bonds. ___CCl₄_____

Name: __KEY______ Section: _____

13) Indicate the hybridization of the **central atom**. Also indicate the **total number** of sigma (σ) and pi (π) bonds in the following molecules.

Formula	Hybridization of central atom	# of σ bonds	# of π bonds
CO ₂	sp	2	2
BeCl ₂	sp	2	0
H ₂ O	sp ³	2	0
BF ₃	sp ²	3	0
CCl ₄	sp ³	4	0
NH ₃	sp ³	3	0
NO ₃	sp ²	3	1
SO ₃	sp ²	3	1
SO ₃ ² -	sp ³	3	0
NF ₃	sp ³	3	0
СО	sp	1	2
O_3	sp ²	2	1
CO ₃ ² -	sp ²	3	1
SO ₂	sp ²	2	1
PF ₅	sp ³ d	5	0
PCl ₅	sp ³ d	5	0
SF ₆	$\mathrm{sp}^{3}\mathrm{d}^{2}$	6	0
TeF ₆	sp ³ d ²	6	0