| Name:KEY | | Section: | |----------|-------------------------------|----------| | | Chapter 7 Practice Worksheet: | | ## **Covalent Bonds and Molecular Structure** 1) How are ionic bonds and covalent bonds different? from two atoms sharing electrons. Ionic bonds result from the transfer of electrons from one atom to another; Covalent bonds result 2) Describe the relationship between the length of a bond and the strength of that bond. Strength of a bond increases as the bond gets shorter (inverse relationship) 3) Identify the type(s) of bond(s) found in the following molecules: a. CCl₄ ___covalent_____ b. Li₂O <u>ionic</u> c. NF₃ ___covalent_____ d. CaSO₄ ___ionic and covalent_____ e. SO₂ <u>covalent</u> f. Mg(OH)₂ ___ionic and covalent____ 4) Define electronegativity. Electronegativity is the ability for an atom in a molecule to attract electrons to itself. 5) Use electronegativity values to place the following elements in **increasing** order: F, N, H, P, Si, C, O $Si < H = P \approx C < N < O < F$ 6) Determine if the bond between atoms in each example below is nonpolar covalent, polar covalent, or ionic. a. H₂ ___npc____ e. NF __pc____ b. PCl ___pc____ f. MgO __ionic____ c. F₂ ___npc____ g. CH __npc____ d. NaBr ___ionic____ h. HCl __pc____ | Name: _ | KEY | Section: | |---------|-----|----------| |---------|-----|----------| - 7) Draw Lewis Structures for the following molecules: (the descriptions below indicate the number and types of bonds on central atoms (first one listed except in H₂O; outer atoms have complete octets with lone pairs) - a. CO₂ (double bonds from C toeach O, no lone pairs) - b. BeCl₂ (single bond to each Cl, no lone pairs) - c. H₂O (single bond to O, 2 lone pairs on O) - d. BF₃ (single bonds to F, no lone pairs) - e. CCl₄ (single bonds to Cl, no lone pairs) - f. NH₃ (single bonds to H, 1 lone pair on N) - g. NO₃ (2 single bonds, 1 double bond, no lone pairs) - h. SO₃ (2 single bonds, 1 double bond, no lone pairs) - i. SO_3^{2-} (3 single bonds, 1 lone pair) - j. NF₃ (3 single bonds, 1 lone pair) - k. CO (triple bond, lone pair on C and O) - 1. O₃ (1 single bond, 1 double bond,1 lone pair) - m. CO₃²⁻ (2 single bonds, 1 double bond) - n. SO₂ (1 single bond, 1 double bond,1 lone pair) - o. PF₅ (5 single bonds, no lone pairs) - p. PCl₅ (5 single bonds, no lone pairs) - q. SF₆ (6 single bonds, no lone pairs) - r. TeF₆ (6 single bonds, no lone pairs) - 8) Which of the above compounds (in number 7) require resonance structures to describe the structure properly? Draw them. g, h, l, m, and n | Name: _ | _KEY | Section: | |---------|------|----------| |---------|------|----------| 9) Which of the above compounds (in number 7) are exceptions to the octet rule? 10) Fill in the table below to determine the molecular geometry for the following molecules: | Formula | ABE
formula | Number of edomains on central atom | # e domains/ # non-bonding domains on central atom | Electron-
Domain
Geometry
(name) | Molecular
Geometry
(name) | Bond
angle(s) on
central atom | |-------------------------------|----------------|------------------------------------|--|---|---------------------------------|-------------------------------------| | CO ₂ | AB_2 | 2 | 2/0 | Linear | Linear | 180° | | BeCl ₂ | AB_2 | 2 | 2/0 | Linear | Linear | 180° | | H ₂ O | AB_2E_2 | 4 | 2/2 | Tetrahedral | Bent | <109.5° | | BF ₃ | AB_3 | 3 | 3/0 | Trigonal
planar | Trigonal
planar | 120° | | CCl ₄ | AB_4 | 4 | 4/0 | Tetrahedral | Tetrahedral | 109.5° | | NH ₃ | AB_3E_1 | 4 | 3/1 | Tetrahedral | Trigonal
pyramidal | <109.5° | | NO ₃ | AB_3 | 3 | 3/0 | Trigonal
planar | Trigonal
planar | 120° | | SO ₃ | AB_3 | 3 | 3/0 | Trigonal
planar | Trigonal
planar | 120° | | SO ₃ ²⁻ | AB_3E_1 | 4 | 3/1 | Tetrahedral | Trigonal pyramidal | <109.5° | | NF ₃ | AB_3E_1 | 3 | 3/1 | Tetrahedral | Trigonal
pyramidal | <109.5° | | Formula | ABE
formula | Number of e ⁻ domains on central atom | # e domains/ # non-bonding domains on central atom | Electron-
Domain
Geometry | Molecular
Geometry
(name) | Bond
angle(s) on
central atom | |--------------------------------|----------------|--|--|---------------------------------|---------------------------------|-------------------------------------| | <u>c</u> o | AB_1E_1 | 2 | 1/1 | Linear | Linear | 180° | | O ₃ | AB_2E_1 | 3 | 2/1 | Trigonal
planar | Bent | <120° | | CO ₃ ² - | AB_3 | 3 | 3/0 | Trigonal
planar | Trigonal
planar | 120° | | SO ₂ | AB_2E_1 | 3 | 2/1 | Trigonal
planar | Bent | <120° | | PF ₅ | AB_5 | 5 | 5/0 | Trigonal
bipyramidal | Trigonal
bipyramidal | 120° and 90° | | PCl ₅ | AB_5 | 5 | 5/0 | Trigonal
bipyramidal | Trigonal
bipyramidal | 120° and 90° | | SF ₆ | AB_6 | 6 | 6/0 | Octahedral | Octahedral | 90° | | TeF ₆ | AB_6 | 6 | 6/0 | Octahedral | Octahedral | 90° | 11) a. Identify the molecules in the table above that are polar. - b. How many nonbonding pairs of electrons did the polar molecules have? __1 or 2_____ - c. How many nonbonding pairs of electrons did the nonpolar molecules have? __none____ - 12) Give one example of a polar molecule that has nonpolar bonds. ___O₃_____ Give one example of a nonpolar molecule that has polar bonds. ___CCl₄_____ Name: __KEY______ Section: _____ 13) Indicate the hybridization of the **central atom**. Also indicate the **total number** of sigma (σ) and pi (π) bonds in the following molecules. | Formula | Hybridization of central atom | # of σ
bonds | # of π
bonds | |--------------------------------|---------------------------------|-----------------|-----------------| | CO ₂ | sp | 2 | 2 | | BeCl ₂ | sp | 2 | 0 | | H ₂ O | sp ³ | 2 | 0 | | BF ₃ | sp ² | 3 | 0 | | CCl ₄ | sp ³ | 4 | 0 | | NH ₃ | sp ³ | 3 | 0 | | NO ₃ | sp ² | 3 | 1 | | SO ₃ | sp ² | 3 | 1 | | SO ₃ ² - | sp ³ | 3 | 0 | | NF ₃ | sp ³ | 3 | 0 | | СО | sp | 1 | 2 | | O_3 | sp ² | 2 | 1 | | CO ₃ ² - | sp ² | 3 | 1 | | SO ₂ | sp ² | 2 | 1 | | PF ₅ | sp ³ d | 5 | 0 | | PCl ₅ | sp ³ d | 5 | 0 | | SF ₆ | $\mathrm{sp}^{3}\mathrm{d}^{2}$ | 6 | 0 | | TeF ₆ | sp ³ d ² | 6 | 0 |