Chapter 14 - Chemical Kinetics

Chemical Kinetics - Rates of Reactions

Chemical Kinetics is the study of the rate of reaction. "How fast" does it

Collision Theory

Reaction rates are not constant. They are actually dependant on the conditions under which the reaction takes place. How can we make a reaction go faster? How do we increase the rate of a reaction?

Rule \#1: For a reaction to take place, reactants must collide!!

These two reactants cannot react because they are not in contact with one another. They may eventually run into each other, but they need time to diffuse

But even if they do collide, it does not guarantee a reaction!!

Number of particles that actually react

Collision Theory

Rule \#2: When molecules collide, they must be in an optimal orientation.

Rule \#3: When molecules collide, they must have a certain minimum amount of energy in order for the reaction to occur.

Although this collision seems to be in the correct orientation, the reactants do not have enough energy

Collision Theory and Activation Energy $\left(E_{\mathrm{a}}\right)$

Exothermic vs. Endothermic Reactions

Products have lower energy than reactants
Energy released during reaction

$$
\begin{gathered}
-\Delta \mathrm{H} \\
\text { EXOTHERMIC }
\end{gathered}
$$

Products have higher energy than reactants
Energy absorbed during reaction
\square

Concentration and Rate

Higher concentration of reactants allow more opportunities for collisions.

Surface Area and Rate

Can only collide with particles on the surface of the solid

If the particles are made finer, there are many more opportunities for collisions

Higher surface area of reactants increase the rate of a reaction

Temperature and Rate

Why does temperature affect rate?

- More collisions: Since particles move faster at higher temperatures there is more opportunity to interact/collide.
- More energy: More particles will have enough energy to overcome $E_{\text {a }}$

Distribution of energies of particles at different temperatures

Catalysts and rate

-Catalysts allow a different path for the reaction to tale place. A path with a lower E_{a}.
-Catalysts are regenerated in a reaction. That is, they are not consumed

Catalysts

Catalysts allow more particles to react per unit of time

Biological Catalysts / Catalysis

Many reactions in the human body are catalyzed by proteins called enzymes. Enzymes catalyze reactions by binding to reactant particles called substrates.

Chemical Kinetics

What does a graphical representation of different reaction rate look like?
Let's say we have two different decomposition reactions; one faster than the other.

While "fast" and "slow" are good qualitative words when comparing rates, how do we quantitatively determine this?

Most often, especially for aqueous solutions, we define "amount" as concentration (M or $\mathrm{mol} / \mathrm{L}$) denoted by brackets, [].

Time can be in any units. Very often, we use seconds

How do we determine rate of reaction?

We can measure the concentrations of reactants or products various ways. In some solutions, we can use visible spectroscopy to determine concentration of reactants or products, usually expressed in M or mol/L. Gases can be expressed in partial pressures (atm).

Rateofreaction $=\frac{-\Delta[\operatorname{reactan} \mathrm{n} \phi)]}{\Delta t}=\frac{\Delta[\operatorname{product}(\$]}{\Delta \mathrm{t}} \quad \Delta=$ final - initial
$A \rightarrow B$

1.00M
$t=0 s$

$$
\text { Rate }=\frac{-(0.50 \mathrm{M}-1.00 \mathrm{M})}{(25 \mathrm{~s}-0 \mathrm{~s})}=\frac{0.50 \mathrm{M}}{25 \mathrm{~s}}=0.020 \frac{\mathrm{M}}{\mathrm{~s}} \quad \text { Rate }=\frac{-(0.25 \mathrm{M}-0.50 \mathrm{M})}{(50 \mathrm{~s}-25 \mathrm{~s})}=\frac{0.25 \mathrm{M}}{25 \mathrm{~s}}=0.010 \frac{\mathrm{M}}{\mathrm{~s}}
$$

Chemical Kinetics - Rates of Reactions

$\mathrm{A} \rightarrow \mathrm{B} \quad$ Rateofreaction $=\frac{-\Delta[\text { reacta } \mathrm{nt} \phi)]}{\Delta t}=\frac{\Delta[\operatorname{product}(\mathrm{\delta})]}{\Delta \mathrm{t}} \quad \Delta=$ final - initial

We can calculate an "average" rate of the reaction between any two data points during the reaction

$$
\text { Overall Avg Rate }=\frac{(5.00 \mathrm{M}-0.08 \mathrm{M})}{(0 \mathrm{~min}-3.0 \mathrm{~min})}=\frac{4.92 \mathrm{M}}{3.0 \mathrm{~min}}=1.6 \frac{\mathrm{M}}{\min }
$$

Chemical Kinetics - Rates of Reactions

Chemical Kinetics - Rates of Reactions

Time (s)	[Phenyl Acetate] (M)
0.0	0.550
15.0	0.420
30.0	0.310
45.0	0.230
60.0	0.170
75.0	0.120
90.0	0.085

- What is the overall average reaction rate

$$
5.17 \times 10^{-3} \mathrm{M} / \mathrm{s}
$$

- What is the average rate from $t=0.0 \mathrm{~s}$ to $t=15.0 \mathrm{~s}$
$8.67 \times 10^{-3} \mathrm{M} / \mathrm{s}$
- Should the average from $t=15.0$ s to 30.0 s be higher or lower than $t=0.0$ s to $t=15.0 s ? ?$?

The rate from $t=15.0$ s to 30.0 s should be slower

Rate of Disappearance of Reactants and Appearance of Products

Notice that the reactants have a "-" and the products do not.

If the coefficients are different, the rates will be different

Rate of disappearance of reactants and appearance of products based on coefficients

$$
1 \mathrm{~A}+2 \mathrm{~B} \rightarrow 1 \mathrm{C} \quad \text { Rateofreaction }=-\frac{1}{1}\left(\frac{\Delta[\mathrm{~A}]}{\Delta \mathrm{t}}\right)=-\frac{1}{2}\left(\frac{\Delta[\mathrm{~B}]}{\Delta \mathrm{t}}\right)=\frac{1}{1}\left(\frac{\Delta[\mathrm{C}]}{\Delta \mathrm{t}}\right)
$$

If C is appearing at $5.0 \times 10^{-5} \mathrm{M} / \mathrm{s}$ at what rate is A disappearing?
$-\frac{1}{1}\left(\frac{\Delta[\mathrm{~A}]}{\Delta t}\right)=\frac{1}{1}\left(\frac{\Delta[\mathrm{C}]}{\Delta t}\right) \Rightarrow-\frac{1}{1}\left(\frac{\Delta[\mathrm{~A}]}{\Delta t}\right)=\frac{1}{1}\left(5.0 \times 10^{-5} \mathrm{~m} / \mathrm{s}\right) \Rightarrow\left(\frac{\Delta[\mathrm{A}]}{\Delta t}\right)=-5.0 \times 10^{-5} \mathrm{M} / \mathrm{s}$
If A is disappearing at $-1.0 \mathrm{M} / \mathrm{min}$ at what rate is B disappearing?
$-\frac{1}{1}\left(\frac{\Delta[A]}{\Delta t}\right)=-\frac{1}{2}\left(\frac{\Delta[B]}{\Delta t}\right) \Rightarrow-\frac{1}{1}(-1.0 \mathrm{M} / \mathrm{s})=-\frac{1}{2}\left(\frac{\Delta[B]}{\Delta t}\right) \Rightarrow-2(-1.0 \mathrm{M} / \mathrm{s})=-\left(\frac{\Delta[B]}{\Delta t}\right) \Rightarrow\left(\frac{\Delta[B]}{\Delta t}\right)=-2.0 \mathrm{M} / \mathrm{s}$ If B is disappearing at $-0.44 \mathrm{M} / \mathrm{min}$ at what is the (generic) reaction rate?

Rateofreaction $=-\frac{1}{2}\left(\frac{\Delta[\mathrm{~B}]}{\Delta \mathrm{t}}\right) \Rightarrow$ Rateofreaction $=-\frac{1}{2}(-0.44 \mathrm{M} / \mathrm{min}) \Rightarrow$ Rateofreaction $=0.22 \mathrm{M} / \mathrm{min}$

Rate of
 Disappearance of Reactants and Appearance of Products

In the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ the appearance of NO_{2} is $3.12 \times 10^{-1} \mathrm{M} / \mathrm{s}$. What is the rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$?

$$
1.56 \times 10^{-1} \mathrm{M} / \mathrm{s}
$$

In the synthesis of Ammonia, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$, if the rate of disappearance of H_{2} is $4.5 \times 10^{-4} \mathrm{M} / \mathrm{s}$, what is the rate of appearance of ammonia, NH_{3} ?

$$
3.0 \times 10^{-4} \mathrm{M} / \mathrm{s}
$$

Chemical Kinetics and Concentration - Rate Law

Each reaction can be expressed by what is called a "Rate Law"
The rate law describes how each reactant's concentration has an effect on the reaction rate

General Rate Law
 Rate $=k[A]^{x}[B]^{y} . .$.

$\bullet[A]=$ concentration (M) of reactant A
$\bullet[B]=$ concentration (M) of reactant B
$\bullet k=$ rate constant (depends on other units)
-Rate $=$ usually in M / s or mol $/ \mathrm{L} \cdot \mathrm{s}$
$\bullet x$ and $y=$ "order" of each reactant

Only reactants that affect the rate of the reaction are included in the rate law. In other words, not every reactant that appears in the balanced equation will be in the rate law!

Determining Rate Law - Determining the Order of each reactant

While it seems like it should work, we should never determine the Rate Law based on the balanced equation!! This is because reactions can have multiple intermediate steps not accounted for in the balanced equation.

We can determine the Rate Law using experimentation data of initial rates.

$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{Z}$						
Trial	Initial [A]	Initial [B]	Initial Rate			
1	0.100 M	0.300 M	$1.00 \mathrm{M} / \mathrm{s}$			•First, find two trials where one reactant has
:---						
the same concentration. This why we can						
cancel the effect of that reactant has on the						
rate (For example, trials 1 \&2).						

$$
\text { Rate }=k[\mathrm{~A}]^{\times}[\mathrm{B}]^{y}
$$

Ignore the reactant with the same concentration and -Solve for the exponent gnore k, for now.

Determining Rate Law - Determining the Order of Each Reactant

Determining Rate Law - Determining the Rate Law Constant (k)

Determining Rate Law Practice

Use the following data to determine the rate law and the value of k for the reaction between NO and O_{2}.

Trial	Initial [NO$]$ (M)	Initial $\left[\mathrm{O}_{2}\right]$ (M)	nitial Rate $(\mathrm{M} / \mathrm{s})$
1	0.020	0.010	0.028
2	0.020	0.020	0.057
3	0.020	0.040	0.114
4	0.040	0.020	0.227
5	0.010	0.020	0.014

	Initial $[A]$	Initial $[B]$	Initial $[C]$	Rate (M / s)
Trial	(M)	(M)	(M)	(M)
1	0.10	0.10	0.10	1.8×10^{-6}
2	0.30	0.10	0.10	5.4×10^{-6}
3	0.30	3.00	0.10	4.86×10^{-3}
4	0.10	0.10	3.00	1.8×10^{-6}

Determining Rate Law - Tricks Up My Sleeve

$(1.3)^{x}=(2.2)$
WTF?!

Determining Rate Law - Tricks Up My Sleeve \#1

$$
\ln \left(\mathrm{a}^{x}\right)=x \ln (\mathrm{a})
$$

$$
(1.3)^{x}=(2.2)
$$

Take natural log of both sides

$$
\begin{gathered}
x \ln (1.3)=\ln (2.2) \\
\downarrow \\
\downarrow \\
x 0.262=0.778 \\
\text { solve for "x" } \\
\downarrow \\
\mathrm{x}=2.96 \approx 3
\end{gathered}
$$

$$
x \ln (1.3)=\ln (2.2)
$$

Determining Rate Law Group Practice

Trial	Initial P_{A} $(\mathrm{~atm})$	Initial P_{B} (atm)	Rate (atm $/ \mathrm{min})$
1	5.97	0.25	1.33
2	0.50	0.25	7.81×10^{-4}
3	0.50	7.62	2.38×10^{-2}

Trial	Initial $[\mathrm{A}]$ (M)	Initial $[\mathrm{B}]$ (M)	Rate $(\mathrm{M} / \mathrm{s})$
1	0.10	0.20	2.5×10^{-4}
2	0.10	0.10	1.2×10^{-4}
3	0.30	0.30	1.1×10^{-3}

*This one may initially look impossible, but it's not. Hint: Think about what you already know....

Integrated Rate Laws - Rate and Time

With the help of calculus, we can use another form of the rate law that allows us to calculate how concentration of a reactant changes with time. It is called the integrated rate law.

Remember...

$\underline{2}^{\text {nd }}$-order rate law

What about a reaction where the concentration of the reactants that do not affect the rate. Does it exist? Yup.
$0^{\text {th }}$-order rate law

$$
\text { Rate }=k \quad[\mathrm{~A}]_{t}=[\mathrm{A}]_{0}-k t
$$

Integrated Rate Laws $-1^{\text {st }}$ order

-A certain decomposition reaction is $1^{\text {st }}$ order overall. What is the rate constant if the concentration of A goes from an initial concentration of

$$
\begin{aligned}
& \ln \frac{[\mathrm{A}]_{t}}{[\mathrm{~A}]_{0}}=-k t \\
& \frac{1}{[\mathrm{~A}]_{t}}=k t+\frac{1}{[\mathrm{~A}]_{0}} \\
& {[\mathrm{~A}]_{t}=[\mathrm{A}]_{0}-k t}
\end{aligned}
$$ 5.55 M to 1.11 M in 3.0 minutes?

$$
\ln \left(\frac{1.11 \mathrm{M}}{5.55 \mathrm{M}}\right)=-\mathrm{k}(3.0 \mathrm{~min}) \quad \square-1.609=-\mathrm{k}(3.0 \mathrm{~min}) \quad \square \mathrm{k}=0.54 \mathrm{~min}^{-1}
$$

-How long would it take for the concentration to reach 50% of its original concentration?

Using \% directly in the equation will only work with
$1^{\text {st }}$ order since k doesn't include a concentration unit. For other orders ($2^{\text {nd }}$ and $0^{\text {th }}$), use actual concentrations in the equations.

Integrated Rate Laws - $1^{\text {st }}$ order More natural log tricks

$$
\begin{aligned}
& \ln \frac{[\mathrm{A}]_{t}}{[\mathrm{~A}]_{0}}=-k t \\
& \frac{1}{[\mathrm{~A}]_{t}}=k t+\frac{1}{[\mathrm{~A}]_{0}} \\
& {[\mathrm{~A}]_{t}=[\mathrm{A}]_{0}-k t}
\end{aligned}
$$

-What would be the concentration after 13 minutes?

Integrated Rate Laws - 2 ${ }^{\text {nd }}$ order

- A second-order decomposition has a rate constant of $0.050 \mathrm{M}^{-1} \mathrm{~min}^{-1}$. Assuming you start with 3.2 M , how long will it take for only 5.0% of the reactant to remain.

$$
\begin{array}{c|c}
\hline \begin{array}{c}
\text { Unlike } 1^{\text {st }} \text { order, you cannot simply use \%'s. You must use } \\
\text { specific concentrations or amounts for your reactant. }
\end{array} & \longrightarrow 3.2 \mathrm{M}\left(\frac{5.0 \%}{100.0 \%}\right)=0.16 \mathrm{M}
\end{array}
$$

So.. $\frac{1}{0.16 \mathrm{M}}=\left(0.050 \mathrm{M}^{-1} \min ^{-1}\right) \mathrm{t}+\frac{1}{3.2 \mathrm{M}} \longrightarrow 5.94=\left(0.050 \mathrm{M}^{-1} \mathrm{~min}^{-1}\right) \mathrm{t} \quad \square \mathrm{t}=120 \mathrm{~min}$

- If the same reaction took 625 s to reach 0.222 M , what was the original concentration?

$$
\begin{aligned}
& \text { Watch for time units. MUST be the same in } \mathrm{k} \text { and for } \mathrm{t} \\
& \frac{1}{0.222 \mathrm{M}}=\left(0.050 \mathrm{M}^{-1} \mathrm{~min}^{-1}\right)(10.4 \mathrm{~min})+\frac{1}{[\mathrm{~A}]_{0}} \longrightarrow 625 \mathrm{~s} \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=10.4 \mathrm{~min} \\
& {[\mathrm{~A}]_{0}=0.25 \mathrm{M}}
\end{aligned}
$$

Half-lives

The time it takes for a reactant to reach half of its initial amount

General Equation for Half-life
$[\mathrm{A}]_{\mathrm{t}_{1 / 2}}=[\mathrm{A}]_{0}\left(\frac{1}{2}\right)^{\mathrm{x}}$
Where " x " = number of half-lives

Half lives

$t_{1 / 2}=\frac{\ln (2)}{k}$

$$
t_{1 / 2}=\frac{1}{k[\mathrm{~A}]_{0}}
$$

Integrated Rate Laws - Half lives

$$
t_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 k}
$$

Half-life equations

General Equation for Half-life

$$
[A]_{t}=[A]_{0}\left(\frac{1}{2}\right)^{x} \quad \text { Where " } x \text { " }=\text { number of half-lives }
$$

Half-lives are related to the rate constant, k, by the following equations

$$
\begin{aligned}
& 1^{\text {st }} \text { Order } \quad \ln \frac{\left(\frac{[\mathrm{AA}]_{0}}{2}\right)}{[\mathrm{A}]_{0}}=-\mathrm{kt} \quad \Longrightarrow \quad t_{1 / 2}=\frac{\ln (2)}{k} \\
& \underline{2^{\text {nd }} \text { Order }} \quad \frac{1}{\left(\frac{[\mathrm{AA}]_{0}}{2}\right)}=\mathrm{kt}+\frac{1}{[\mathrm{~A}]_{0}} \quad \Longrightarrow \quad t_{1 / 2}=\frac{1}{k[\mathrm{~A}]_{0}} \\
& \xrightarrow{\text { oth } \text { Order }} \quad\left(\frac{[\mathrm{A}]_{0}}{2}\right)=[\mathrm{A}]_{0}-\mathrm{kt} \quad \Longrightarrow \quad t_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 k}
\end{aligned}
$$

Half-Life Examples

$t_{1 / 2}=\frac{\ln (2)}{k}$

$$
t_{1 / 2}=\frac{1}{k[\mathrm{~A}]_{0}}
$$

A certain reaction has a rate constant of $1.25 \mathrm{hr}^{-1}$. What is the half life of this reaction in hours? Minutes?
0.555hr

$$
t_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 k}
$$

How many half lives will it take for the same reaction above to go from 6.0 M to 0.020 M ?

8.2 half-lives

If a $2^{\text {nd }}$ order reaction has a half life of 3.1 days, how many hours will it take for 10.0% of the reactant to disappear if the concentration starts at 1.0 M ?

Graphing Integrated Rate Laws

Determining order by graphing

To determine the "order" of the reactant, you must graph the data three different ways: Time vs. Conc.; Time vs. In(Conc.); and Time vs. 1/Conc.

Time (s)	$[\mathrm{A}](\mathrm{M})$
0	1
1	0.5
2	0.333333
3	0.25
4	0.2
5	0.166667
6	0.142857
7	0.125
8	0.111111

Time (s)	$\ln [\mathrm{A}]$
0	0
1	-0.69315
2	-1.09861
3	-1.38629
4	-1.60944
5	-1.79176
6	-1.94591
7	-2.07944
8	-2.19722

Time (s)	$1 /[\mathrm{A}] 1 / \mathrm{M}$
0	1
1	2
2	3
3	4
4	5
5	6
6	7
7	8
8	9

Time vs. \ln (Conc.)

Multistep Reactions - Reaction Mechanisms

$$
\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2}
$$

This reaction happens in multiple steps. But what are they? And how can we figure it out?

First we need to learn about these steps.

Multistep Reactions - Reaction Mechanisms

Reactions that have multiple steps are made of individual steps called elementary steps. Elementary steps are single (concerted) steps.

> | Intermediates are chemical species that are created |
| :--- |
| during the reaction, but not a part of the overall |
| reaction equation. Intermediates are created in an |
| elementary step and consumed in another |

Elementary steps must add up to the overall reaction equation.

Step 1: $\quad 2 \mathrm{NQ}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{Q}_{4}$
Step 2: $\mathrm{N}_{2} \mathrm{Q}_{4}+\mathrm{CO}_{2} \rightarrow 2 \mathrm{NO}_{2}+\mathrm{CO}_{2}$

These are not plausible steps because the steps add up to a different overall reaction

$$
\mathrm{CO}_{2} \rightarrow \mathrm{CO}_{2}
$$

Molecularity and Rate Laws of Elementary steps

Rate laws for elementary steps can be determined directly from the balanced equation The molecularity of an elementary step is based on the rate law for that step

Molecularity	Equation	Rate Law
Unimolecular	$\mathrm{A} \rightarrow \operatorname{Product}(\mathrm{s})$	Rate $=k[\mathrm{~A}]$
Bimolecular	$\mathrm{A}+\mathrm{A} \rightarrow \operatorname{Product}(\mathrm{s})$	Rate $=k[\mathrm{~A}]^{2}$
	$\mathrm{~A}+\mathrm{B} \rightarrow \operatorname{Product}(\mathrm{s})$	Rate $=k[\mathrm{~A}][\mathrm{B}]$
	$\mathrm{A}+\mathrm{A}+\mathrm{A} \rightarrow \operatorname{Product}(\mathrm{s})$	Rate $=k[\mathrm{~A}]^{3}$
Termolecular	$\mathrm{A}+\mathrm{B}+\mathrm{B} \rightarrow \operatorname{Product}(\mathrm{s})$	Rate $=k[\mathrm{~A}][\mathrm{B}]^{2}$
	$\mathrm{~A}+\mathrm{B}+\mathrm{C} \rightarrow \operatorname{Product}(\mathrm{s})$	Rate $=k[\mathrm{~A}][\mathrm{B}][\mathrm{C}]$

Since elementary steps are single steps, rate laws for each step can be determined from the balanced chemical equation

Step 1: $2 \mathrm{NO}_{2} \rightarrow \mathrm{NO}+\mathrm{NO}_{3}$
\square
Elementary Step Rate $=k_{1}\left[\mathrm{NO}_{2}\right]^{2}$

Step 2: $\mathrm{NO}_{3}+\mathrm{CO} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}_{2}$
V
Elementary Step Rate $=k_{2}\left[\mathrm{NO}_{3}\right][\mathrm{CO}]$

Both of these elementary steps are bimolecular

Overall reaction rates of multi-step reactions

Two-step reaction

How many kisses can be processed per hour overall???
The overall reaction can go no faster than the slow step. This step is called the rate-determining or rate-limiting step.

Just remember that reaction rates are not static; reaction rates are variable based on concentration.

Multiple-step Reactions - Elementary Steps - Rate-limiting Step $1^{\text {st }}$

Overall reaction rates of multi-step reactions

Multiple-step Reactions - Elementary Steps - Rate-limiting Step $2^{\text {nd }}$

Overall Chemical Formula

$$
\begin{aligned}
& A+A \rightarrow X \\
& B+X \rightarrow C \\
& 2 A+B \rightarrow C
\end{aligned}
$$

The elementary-step formulas will add up to the overall chemical formula

$2 \mathrm{~A} \rightarrow \mathrm{X}+\mathrm{C}$	$\mathrm{B}+\mathrm{X} \rightarrow \mathrm{C}$
$\boldsymbol{\eta}$	$\boldsymbol{\eta}$
Step 1 Rate Law	Step 2 Rate Law
Rate $=k_{1}[\mathrm{~A}]^{2}$	Rate $=k_{2}[\mathrm{~B}][\mathrm{X}]$

However, unlike the rate-limiting step being first, If the slow, ratedetermining, step is second...it's much more complicated......

Multiple-step Reactions - Elementary Steps - Rate-limiting Step 2 ${ }^{\text {nd }}$

If the slow step is second, the bottleneck creates an equilibrium in the first step.

Intermediates cannot be in the overall rate law. The overall rate law cannot be based solely on the Step 2 rate law. We must combine both rate laws.

Step 1 Rate Law Rate $=k_{1}[\mathrm{~A}]^{2}=k_{-1}[\mathrm{X}]$	$\Rightarrow[\mathrm{X}]=\frac{k_{1}[\mathrm{~A}]^{2}}{k_{-1}}$
Solve for the intermediate	Substitute

Multiple-step Reactions - Elementary Steps - Rate-limiting Step

Notice that the same reaction with the same elementary steps can give us different overall rate laws because of the location of the slow step.

$$
2 A+B \rightarrow C
$$

How do we know which one is correct for this reaction? Experimentally Determined Rate Law

Multiple-step Reactions - Elementary Steps

$\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2} \quad$ has an experimentally determined rate law of \quad Rate $=k\left[\mathrm{NO}_{2}\right]^{2}$

Which of the following is most likely to represent the mechanism for the reaction?

\[

\]

Catalysts \#2 - Mechanisms

Area $=$ number of particles
that react at higher temp

Arrhenius Equation

Svante Arrhenius determined that activation energy $\left(\mathrm{E}_{\mathrm{a}}\right)$ of a reaction is related to the reaction constant.

$$
k=A e^{\frac{-E_{0}}{R T}}
$$

That is....at any temperature the lower the activation energy, the faster a reaction will proceed.

Arrhenius Equation

$$
\begin{aligned}
& \begin{array}{l}
\text { We can also do calculations } \\
\text { without graphing, but combining } \\
\text { two equations into one. }
\end{array} \\
& \begin{array}{l}
\ln k_{1}=\ln A-\frac{\mathrm{E}_{\mathrm{a}}}{R T_{1}} \\
\ln k_{2}=\ln A-\frac{\mathrm{E}_{\mathrm{a}}}{R T_{2}}
\end{array} \\
& \begin{array}{l}
\text { we know both } \mathrm{k}_{1} \text { and } \mathrm{k}_{2} \text {, along } \\
\text { with } \mathrm{T}_{1} \text { and } \mathrm{T}_{2} \text { we calculate the } \\
\text { energy of activation }
\end{array} \\
& \qquad \ln \frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right) \\
& \hline
\end{aligned}
$$

In a certain equation, the rate constant at 701 K was measured as $2.57 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and that at

 895 K was measured as $556 \mathrm{M}^{-1} \mathrm{~s}^{-1}$. Find the activation energy of the reaction.$$
\ln \frac{556 \frac{1}{\mathrm{Ms}}}{2.57 \frac{1}{\mathrm{Ms}}}=\frac{\mathrm{E}_{\mathrm{a}}}{8.314 \frac{\mathrm{~J}}{\mathrm{molK}}}\left(\frac{1}{701 \mathrm{~K}}-\frac{1}{895 \mathrm{~K}}\right) \Rightarrow 5.38=\frac{\mathrm{E}_{\mathrm{a}}}{8.314 \frac{\mathrm{~J}}{\operatorname{molK}}}\left(3.09 \times 10^{-4} \frac{1}{\mathrm{~K}}\right) \Longrightarrow 1.45 \times 10^{5} \mathrm{~J} / \mathrm{mol}
$$

