

#1 – 8: Multiply 1) 1.2×3.4 2) 4.2×5.7 3) -6.21×2.4 4) -3.14×2.3

5) 3.02556×10^3

6) 4.23587 × 10⁴

7) 6.02×10^5 8) 5.1×10^3

#9-12: Divide

9) 7.68 ÷ 3.2 10) 17.22 ÷ 2.1

11) $-21.73 \div 4.1$

12) -13.33 ÷ 3.1

A **percent** is a ratio whose denominator is 100. Percent means per hundred. We use the percent symbol, %, to show percent. Since a percent is a ratio, it can easily be expressed as a fraction.

• NOTE $\sqrt{}$ the principal square root symbol requires a positive answer

Principal Square Root Notation:

 \sqrt{m} is read "the principle square root of m. radical sign $\rightarrow \sqrt{m}$ radicand

For example: $\sqrt{25} = 5$ (since 5 is a positive number and $5^2 = 25$)

13) Convert 30.251% to a decimal.

14) Convert 24.155 % to a decimal.

15) Convert 25.4% to a fraction.

16) Convert 12.3% to a fraction.

17) Write 0.12 as a fraction, reduced to lowest terms.

18) Write 0.24 as a fraction, reduced to lowest terms.

19) Write 6.123 as a percent.

20) Write 4.0225 as a percent.

21) Convert $\frac{4}{5}$ to a decimal.

22) Convert $\frac{2}{5}$ to a decimal.

23) Convert $\frac{6}{24}$ to a percent.

24) Convert $\frac{9}{12}$ to a percent.

#25 – 26: Complete the table

25)			26)				
Fraction	Decimal	Percent		Fraction	Decimal	Percent	
1/2				$\frac{3}{1}$			
				4			
	0.8				0.28		
			_				
		75%				60%	

Numbers can be classified into 5 broad categories. The categories are as follows: (Note that some numbers count in more than one category.

Counting Numbers (Natural Numbers)	1, 2, 3, 4,
Whole Numbers	0, 1, 2, 3, 4
Integers	, -3, -2, -1, 0, 1, 2, 3
Rational Number	Examples: $5, \frac{7}{8}, \frac{1}{3}, 0.97, \overline{0.21}, \sqrt{16}$
Irrational Number	<i>Examples:</i> π , e , $\sqrt{8}$, 0.30312300003

Counting numbers (also called natural numbers) are those used to count physical objects in the real world, such as 1, 2, 3, 4 ...

• 6 is a counting number as it can be used to count many physical objects.

Whole numbers are counting numbers with the number 0 added.

- 9 is a whole number as it is a counting number
- 0 is a whole number as 0 is included as a whole number

Integers are all counting numbers, the opposite of every counting number and 0.

• -3 is an integer as it is the opposite of the counting number 3

Rational numbers are numbers that can be written as a ratio of two integers.

Its decimal form does stop or repeat.

NOTE: Any number with a repeating decimal can be written as the ratio of two integers. Thus, any number with a repeating decimal is a rational number.

- $\frac{2}{3}$ is a rational number as it is a fraction with integers in the numerator and the denominator.
- $42.5\overline{34}$ is a rational number as it is has a repeating decimal. With a bit of work, $42.5\overline{34}$ can be written as the fraction $\frac{42109}{990}$.
- -7 is a rational number as it can be written as $\frac{-7}{1}$

An **irrational number** is a number that cannot be written as the ratio of two integers. Its decimal form does not stop and does not repeat.

- 15.435678234... is an irrational number, assuming the decimal does not terminate nor repeat.
- Any number that contains π (3.14 ...) or e (2.718..) are irrational as the decimal does not terminate nor repeat.
- $\sqrt{5}$ is an irrational number. Its decimal form does not stop, nor repeat. In fact, the square root of any number that is not a perfect square is an irrational number.

Real number is any number that is either rational or irrational.

• All numbers listed as examples above are real numbers.

27) Which of the numbers are counting numbers?

7,
$$\pi$$
, $\frac{5}{3}$, $\sqrt{16}$, $\sqrt{7}$, -12, $5\frac{1}{3}$, $0.\overline{23}$, 6.251, 0, 14, $-\frac{5}{4}$

28) Which of the numbers are counting numbers? -11

$$2\pi, \frac{-11}{7}, 2.3\overline{56}, -24, 0, 4.221, \sqrt{4}, \sqrt{10}$$

29) Which of the following are integers?

7,
$$\pi$$
, $\frac{5}{3}$, $\sqrt{16}$, $\sqrt{7}$, -12, $5\frac{1}{3}$, $0.\overline{23}$, 6.251, 0, 14, $-\frac{5}{4}$

30) Which of the following are integers?

$$2\pi$$
, $\frac{-11}{7}$, 2.3 $\overline{56}$, -24, 0, 4.221, $\sqrt{4}$, $\sqrt{10}$

- 31) Which of the numbers are rational numbers? 7, π , $\frac{5}{3}$, $\sqrt{16}$, $\sqrt{7}$, -12, $5\frac{1}{3}$, $0.\overline{23}$, 6.251, 0, 14, $-\frac{5}{4}$
- 32) Which of the numbers are rational numbers? 2π , $\frac{-11}{7}$, 2.3 $\overline{56}$, -24, 0, 4.221, $\sqrt{4}$, $\sqrt{10}$
- 33) Which of the following are irrational numbers?

7,
$$\pi$$
, $\frac{5}{3}$, $\sqrt{16}$, $\sqrt{7}$, -12, $5\frac{1}{3}$, $0.\overline{23}$, 6.251, 0, 14, $-\frac{5}{4}$
34) Which of the following are irrational numbers?

$$2\pi$$
, $\frac{-11}{7}$, 2.3 $\overline{56}$, -24, 0, 4.221, $\sqrt{4}$, $\sqrt{10}$