Section 1.9: Operations with Fractions, Decimals and Percent Chapter 1: Introduction to Algebra

Properties of real numbers

Property	Addition	Multiplication
Commutative Property	You can add in any order $a+b=b+a$ $2+4=4+2=6$	You can multiply in any order $a \times b=b \times a$ $3 \times 4=4 \times 3=12$
Associative Property	When you add, you can group the numbers in any combination $a+(b+c)=(a+b)+c$ $1+(3+4)=(1+3)+4$	When you multiply, you can group the numbers in any combination $a \times(b \times c)=(a \times b) \times c$ $2 \times(3 \times 5)=(2 \times 3) \times 5$
Identity Property	The sum of zero and any number is the number	The product of 1 and any number is the number $a \times 1=a$
	$a+0=a$	$3 \times 1=3$
	$4+0=4$	

1) Rewrite using the associative property of addition: $(x+2)+y$
2) Rewrite using the associative property of addition: $(y+2)+x$

Properties of real numbers

Property	Addition	Multiplication		
Commutative Property	You can add in any order $a+b=b+a$ $2+4=4+2=6$	You can multiply in any order $a \times b=b \times a$ $3 \times 4=4 \times 3=12$		
Associative Property	When you add, you can group the numbers in any combination $a+(b+c)=(a+b)+c$ $1+(3+4)=(1+3)+4$	When you multiply, you can group the numbers in any combination $a \times(b \times c)=(a \times b) \times c$ $2 \times(3 \times 5)=(2 \times 3) \times 5$		
Identity Property	The sum of zero and any number is the number	The product of 1 and any number is the number $a \times 1=a$		
$a+0=a$			$\quad 3 \times 1=3$	a
:---				

3) Rewrite using the associative property of multiplication: $6(c \times d)$

4) Rewrite using the associative property of multiplication: 7 $a \times b)$

Properties of real numbers

Property	Addition	Multiplication
Commutative Property	You can add in any order $\begin{aligned} & a+b=b+a \\ & 2+4=4+2=6 \end{aligned}$	You can multiply in any order $\begin{aligned} & a \times b=b \times a \\ & 3 \times 4=4 \times 3=12 \end{aligned}$
Associative Property	When you add, you can group the numbers in any combination $\begin{aligned} & a+(b+c)=(a+b)+c \\ & 1+(3+4)=(1+3)+4 \end{aligned}$	When you multiply, you can group the numbers in any combination $\begin{aligned} & a \times(b \times c)=(a \times b) \times c \\ & 2 \times(3 \times 5)=(2 \times 3) \times 5 \end{aligned}$
Identity Property	The sum of zero and any number is the number $\begin{aligned} & a+0=a \\ & 4+0=4 \end{aligned}$	The product of 1 and any number is the number $a \times 1=a$ $3 \times 1=3$

5) Rewrite using the commutative property of addition: $x+5$

6) Rewrite using the commutative property of addition: $y+9$

Properties of real numbers

Property	Addition	Multiplication
Commutative Property	You can add in any order $\begin{aligned} & a+b=b+a \\ & 2+4=4+2=6 \end{aligned}$	You can multiply in any order $\begin{aligned} & a \times b=b \times a \\ & 3 \times 4=4 \times 3=12 \end{aligned}$
Associative Property	When you add, you can group the numbers in any combination $\begin{aligned} & a+(b+c)=(a+b)+c \\ & 1+(3+4)=(1+3)+4 \end{aligned}$	When you multiply, you can group the numbers in any combination $\begin{aligned} & a \times(b \times c)=(a \times b) \times c \\ & 2 \times(3 \times 5)=(2 \times 3) \times 5 \end{aligned}$
Identity Property	The sum of zero and any number is the number $\begin{aligned} & a+0=a \\ & 4+0=4 \end{aligned}$	The product of 1 and any number is the number $\begin{aligned} & a \times 1=a \\ & 3 \times 1=3 \end{aligned}$

7) Rewrite using the commutative property of multiplication: $x 5$

8) Rewrite using the commutative property of multiplication: y9

Properties of real numbers

Property	Addition	Multiplication
Commutative Property	You can add in any order $a+b=b+a$ $2+4=4+2=6$	You can multiply in any order $a \times b=b \times a$ $3 \times 4=4 \times 3=12$
Associative Property	When you add, you can group the numbers in any combination $a+(b+c)=(a+b)+c$ $1+(3+4)=(1+3)+4$	When you multiply, you can group the numbers in any combination $a \times(b \times c)=(a \times b) \times c$ $2 \times(3 \times 5)=(2 \times 3) \times 5$
Identity Property	The sum of zero and any number is the number	The product of 1 and any number is the number $a \times 1=a$
	$a+0=a$	$3 \times 1=3$

9) Rewrite using the commutative property of multiplication:

 $(x-3) 7$10) Rewrite using the commutative property of multiplication:
$(x-2) 5$

11) Rewrite using the distributive property, and simplify: $5(2+4)$
12) Rewrite using the distributive property, and simplify: $7(5+3)$

13) Rewrite using the distributive property, and simplify: $(7+3) 8$
14) Rewrite using the distributive property, and simplify: $(5+2) 9$

15) Rewrite using the distributive property, and simplify: $5(10-4)$
16) Rewrite using the distributive property, and simplify: 7(5 - 3)

17) Rewrite using the distributive property, and simplify: $(2-3) 8$
18) Rewrite using the distributive property, and simplify: $(1-2) 9$

19) Rewrite using the distributive property: $5(x+y)$
20) Rewrite using the distributive property: $7(a+b)$

21) Rewrite using the distributive property: $(c+d) 8$
22) Rewrite using the distributive property: $(x+y) 9$

23) Rewrite using the distributive property, and simplify: 5($a-4$)
24) Rewrite using the distributive property, and simplify: 7(c - 5)
25) Rewrite using the distributive property, and simplify: $(x-2) 8$
26) Rewrite using the distributive property, and simplify: $(y-2) 9$
\#27-38: Simplify
27) $-5(x-2)$
28) $-3(y-4)$
29) $-(3 x-2 y)$
30) $-(5 x-4 y)$
31) $8\left(3 x^{2}+5 x-4\right)$
32) $6\left(2 y^{2}+3 y-9\right)$
33) $-2\left(4 x^{2}+6 x-3\right)$
34) $-3\left(5 y^{3}-6 y+1\right)$
35) $\frac{1}{2}\left(\frac{4}{5} x+\frac{9}{2}\right)$
36) $\frac{2}{3}\left(\frac{6}{9} x+\frac{15}{8}\right)$
37) $\frac{3}{4}\left(\frac{4}{9} x-\frac{6}{5}\right)$
38) $\frac{3}{5}\left(\frac{15}{9} x-\frac{7}{6}\right)$

Section 1.9: Operations with Fractions, Decimals and Percent Chapter 1: Introduction to Algebra.

Fractions in the form $\frac{0}{x}$ and division problems of the form $0 \div x$
Every fraction obeys the following rules

- $\frac{\text { numerator }}{\text { denominator }}=$ answer
- answer \times denominator $=$ numerator

For example: $\frac{6}{2}=3$ and $3 \times 2=6$
What does the fraction $\frac{0}{6}$ reduce to?
I know that the above rule must apply to the answer:

$$
\frac{0}{6}=\text { answer } \quad \text { and } \quad \text { answer } \times 6=0
$$

I claim: $\frac{0}{6}=0$
I will show you that it does.
we know that $\frac{0}{6}=$ answer and answer $\times 6=0$

- change answer to 0
- $\frac{0}{6}=0$ Then: $0 \times 6=0$
- since 0×6 does equal 0 I know my answer is correct

Thus $\frac{0}{6}=0$

Rule for fractions with 0 in the numerator

$\frac{0}{x}=0 ;$ provided $x \neq 0$
and
$0 \div x=0 ;$ provided $x \neq 0\left(\right.$ since $\left.\frac{0}{x}=0 \div x\right)$

Section 1.9: Operations with Fractions, Decimals and Percent Chapter 1: Introduction to Algebra.

$$
\text { Fractions in the form } \frac{x}{0},(x \neq 0) \text { and division problems in the form } x \div 0, x \neq 0
$$

What does the fraction $\frac{12}{0}$ reduce to?
I know that the above rule must apply to the answer:
$\frac{12}{0}=$ answer \quad and answer $\times 0=12$
This is a problem when we try to figure out how to solve this:

$$
\text { answer } \times 0=12
$$

- The left side will always reduce to zero, no matter what number I replace with the word answer. The times 0 on the left side forces the left side to always equal 0 .
- There is no number to change the word answer to so that the left side will equal 12
- There is no way to reduce the fraction $\frac{12}{0}$

Thus, we say $\frac{12}{0}=$ undefined

Rule for fractions with 0 in the denominator:
$\frac{x}{0}=$ undefined; provided $x \neq 0$ and
$\mathrm{x} \div 0=$ undefined; provided $x \neq 0$ (since $\frac{x}{0}=\mathrm{x} \div 0$)

Fractions

- The denominator can never be equal to 0 .

$$
\frac{12}{0}=\text { Does not exist! }
$$

- A fraction with a numerator of o equals 0 .

$$
\frac{0}{3}=0 \quad \frac{0}{312}=0
$$

\#39-46: Simplify
39) $\frac{5}{0}$
40) $\frac{2}{0}$
41) $12 \div 0$
42) $8 \div 0$
43) $\frac{0}{7}$
44) $\frac{0}{6}$
45) $0 \div 3$
46) $0 \div 9$

