Difference of Cubes

$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
$\underbrace{\uparrow}_{\text {same sign }}{ }_{\text {_opposite sign }}{ }^{\uparrow} \quad{ }_{\text {always }+}$
After any GCF is factored out, an expression is considered a difference of cubes provided:

- Only has 2 terms
- Minus sign between the terms
- Variables have exponents that are multiples of 3 , such as $x^{3}, y^{6}, z^{9}, w^{12} \ldots$
- Numbers are perfect cubes, such as $1,8,27,64,125,216,343,512, \ldots$

If all 4 above are true after any GCF is factored out, then we factor as follows:
Step 1: Factor out GCF, if applicable
Step 2: Use the rule: $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
Step 3: Determine "a".

- Cube root any numbers in the first term. (if applicable)
- Divide the exponent of the first term's variable by 3. (if applicable)

Step 4: Determine "b"

- Cube root any numbers in the first term. (if applicable)
- Divide the exponent of the first term's variable by 3. (if applicable

Step 5: Place the numbers in the formula and simplify to get the answer.
Step 6: Check

After any GCF is factored out, an expression is considered a sum of cubes provided:

- Only has 2 terms
- Plus sign between the terms
- Variables have exponents that are multiples of 3 , such as $x^{3}, y^{6}, z^{9}, w^{12} \ldots$
- Numbers are perfect cubes, such as $1,8,27,64,125,216,343,512, \ldots$

If all 4 above are true after any GCF is factored out, then we factor as follows:
Step 1: Factor out GCF, if applicable
Step 2: Create template: $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
Step 3: Determine "a".

- Cube root any numbers in the first term. (if applicable)
- Divide the exponent of the first term's variable by 3. (if applicable)

Step 4: Determine "b"

- Cube root any numbers in the first term. (if applicable)
- Divide the exponent of the first term's variable by 3. (if applicable

Step 5: Place the numbers in the formula and simplify to get the answer.
Step 6: Check
For Example: factor $27 x^{3}-64$
Step 1: Factor out GCF, if applicable

Step 2: Create Template:

$$
a^{3}-b^{3}
$$

$=(a-b)\left(a^{2}+a b+b^{2}\right)$
Step 3: Determine " a ".

- Cube root any numbers in the first term. (if applicable)
- Divide the exponent of the first term's variable by 3. (if applicable)

Step 4: Determine "b"

- Cube root any numbers in the first term. (if applicable)
- Divide the exponent of the first term's variable by 3. (if applicable

Step 5: Place the numbers in the formula and simplify to get the answer.

Step 6: Check
Solution: There is no GCF.
Check to see if it is a difference of cubes:

- Only has 2 terms \checkmark
- Minus sign between the terms \checkmark
- Variables have exponents that are multiples of $3, x^{3}$, exponent of 3 is a multiple of 3
- Numbers are perfect cubes, $27=3^{3}, 64=$ 4^{3}

Problem is a difference of cubes.
Step 1: There is no GCF, skip to step 2.
Step 2: Create Template: $(a-b)\left(a^{2}+a b+b^{2}\right)$
Step 3: Determine "a". $a=\sqrt[3]{27} x^{3 / 3}=3 x$
$a=3 x$
Step 3: Determine " b ". $b=\sqrt[3]{64}=4$
b $=4$
Step 5: Place the numbers in the formula and simplify to get the answer.
$27 x^{3}-64=(3 x-4)\left((3 x)^{2}+(3 x)(4)+(4)^{2}\right)$
= Answer: $(3 x-4)\left(9 x^{2}+12 x+16\right)$
Step 6: Check
$9 x^{2}+12 x+16$

$x \quad 3 x-4$

$$
-36 x^{2}-48 x-64
$$

$27 x^{3}+36 x^{2}+48 x$
$27 x^{3}-64 \checkmark$
For Example: Factor $125 x^{3}+y^{6}$
Step 1: Factor out GCF, if applicable

Step 2: Create Template:

$$
a^{3}+b^{3}
$$

$=(a+b)\left(a^{2}-a b+b^{2}\right)$
Step 3: Determine " a ".

- Cube root any numbers in the first term. (if applicable)
- Divide the exponent of the first term's variable by 3. (if applicable)

Step 4: Determine "b"

- Cube root any numbers in the first term. (if applicable)
- Divide the exponent of the first term's variable by 3. (if applicable

Step 5: Place the numbers in the formula and simplify to get the answer.

Step 6: Check

Solution: There is no GCF.
Check to see if it is a sum of cubes:

- Only has 2 terms \checkmark
- Plus sign between the terms \checkmark
- Variables have exponents that are multiples of $3, x^{3}$, exponent of 3 is a multiple of 3 y^{6} exponent of 6 is a multiple of 3 . \checkmark
- Numbers are perfect cubes, $125=5^{3}, \checkmark$

Problem is a sum of cubes.
Step 1: There is no GCF, skip to step 2.
Step 2: Create Template: $(a+b)\left(a^{2}-a b+b^{2}\right)$
Step 3: Determine "a". $a=\sqrt[3]{125} x^{3 / 3}=5 x$
$a=3 x$
Step 3: Determine "b". $b=y^{6 / 3}=y^{2}$
$\mathrm{b}=y^{2}$
Step 5: Place the numbers in the formula and simplify to get the answer.
$125 x^{3}+y^{6}$
$=\left(5 x+y^{2}\right)\left((5 x)^{2}-(5 x)\left(y^{2}\right)+\left(y^{2}\right)^{2}\right)$
$=$ Answer: $\left(5 x+y^{2}\right)\left(25 x^{2}-5 x y^{2}+y^{4}\right)$
Step 6: Check
$25 x^{2}-5 x y^{2}+y^{4}$

$\times \quad 5 x+y^{2}$

$25 x^{2} y^{2}-5 x y^{4}+y^{6}$
$125 x^{3}-25 x^{2} y^{2}+5 x y^{4}$
$125 x^{3}+y^{6} \checkmark$

Section 5.6: Factoring Sums and Differences of Cubes Chapter 5: Factoring
\#1-42: Completely factor the binomials, remember to factor out the GCF first when applicable (if a problem is prime say so).

1) $x^{3}+8$
2) $y^{3}+64$
3) $x^{3}-8$
4) $y^{3}-64$
5) $b^{3}+27$
6) $x^{3}+125$
7) $b^{3}-27$
8) $x^{3}-125$
9) $x^{3}+64$
10) $y^{3}+27$
11) $x^{3}-64$
12) $y^{3}-27$
13) $8 x^{3}-27$
14) $125 x^{3}-64$
15) $8 x^{3}+27$
16) $125 x^{3}+64$
17) $27 x^{3}-125$
18) $64 x^{3}-27$
19) $64 x^{3}-y^{3}$
20) $27 x^{3}-y^{3}$
21) $x^{9}-y^{3}$
22) $y^{6}-x^{3}$
23) $2 x^{6}-54$
24) $3 x^{6}-81$
25) $125 x^{9}-y^{6}$
26) $8 y^{9}-125 x^{6}$
27) $16 x^{3}-54$
28) $3 x^{3}-81$
29) $3 x^{3}+24$
30) $2 x^{3}+128$
31) $x^{4}-8 x$
32) $y^{4}-64 y$
33) $6 x^{4}-48 x$
34) $3 y^{4}-192 y$
35) $8 x^{5}+125 x^{2}$
36) $3 x^{5}-375 x^{2}$
37) $-x^{3}+27$
38) $-y^{3}+64$
39) $64 x^{3}+27$
40) $8 x^{3}+125$
41) $x^{6}+8$
42) $x^{9}+64$
