

Section 5.6: Factoring Sums and Differences of Cubes

Chapter 5: Factoring

For Example: factor $27x^3 - 64$	Solution: There is no GCF.
	Check to see if it is a difference of cubes:
Step 1: Factor out GCF, if applicable Step 2: Create Template: $a^3 - b^3$ = $(a - b)(a^2 + ab + b^2)$ Step 3: Determine "a".	 Only has 2 terms ✓ Minus sign between the terms ✓ Variables have exponents that are multiples of 3, x³, exponent of 3 is a multiple of 3 ✓ Numbers are perfect cubes, 27 = 3³, 64 = 4³ ✓
Cube root any numbers in the first term. (if	Problem is a difference of cubes.
applicable)	Step 1: There is no GCF, skip to step 2.
 Divide the exponent of the first term's variable by 3. (if applicable) 	Step 2: Create Template: $(a - b)(a^2 + ab + b^2)$
	Step 3: Determine "a". $a = \sqrt[3]{27}x^{3/3} = 3x$ a = 3x
Step 4: Determine "b"Cube root any numbers in	Step 3: Determine "b". $b = \sqrt[3]{64} = 4$ b = 4
 the first term. (if applicable) Divide the exponent of the first term's variable 	Step 5: Place the numbers in the formula and simplify to get the answer.
by 3. (if applicable Step 5: Place the numbers in the	$27x^3 - 64 = (3x - 4)((3x)^2 + (3x)(4) + (4)^2)$ = Answer: $(3x - 4)(9x^2 + 12x + 16)$
formula and simplify to get the	Step 6: Check
answer. Step 6: Check	$9x^2 + 12x + 16$ $\times 3x - 4$
	$-36x^{2} - 48x - 64$ $\frac{27x^{3} + 36x^{2} + 48x}{27x^{3} - 64}$

Section 5.6: Factoring Sums and Differences of Cubes

Chapter 5: Factoring

For Example: Factor $125x^3 + y^6$	Solution: There is no GCF.
	Check to see if it is a sum of cubes:
Step 1: Factor out GCF, if applicable Step 2: Create Template: $a^3 + b^3$ = $(a + b)(a^2 - ab + b^2)$ Step 3: Determine "a".	 Only has 2 terms ✓ Plus sign between the terms ✓ Variables have exponents that are multiples of 3, x³, exponent of 3 is a multiple of 3 y⁶ exponent of 6 is a multiple of 3. ✓
 Cube root any numbers in the first term. (if applicable) 	 Numbers are perfect cubes, 125= 5³, ✓ Problem is a sum of cubes.
 Divide the exponent of the first term's variable 	Step 1: There is no GCF, skip to step 2.
by 3. (if applicable)	Step 2: Create Template: $(a + b)(a^2 - ab + b^2)$
Step 4: Determine "b"	Step 3: Determine "a". $a = \sqrt[3]{125}x^{3/3} = 5x$ a = 3x
 Cube root any numbers in the first term. (if applicable) Divide the exponent of the first term's variable by 3. (if applicable 	Step 3: Determine "b". $b = y^{6/3} = y^2$ b = y^2
	Step 5: Place the numbers in the formula and simplify to get the answer.
	$125x^3 + y^6$
Step 5: Place the numbers in the formula and simplify to get the	$= (5x + y^2)((5x)^2 - (5x)(y^2) + (y^2)^2)$ = Answer: $(5x + y^2)(25x^2 - 5xy^2 + y^4)$
answer.	Step 6: Check
Step 6: Check	$25x^2 - 5xy^2 + y^4$ $\times 5x + y^2$
	$\frac{25x^2y^2 - 5xy^4 + y^6}{125x^3 - 25x^2y^2 + 5xy^4}}{125x^3 + y^6}$

Section 5.6: Factoring Sums and Differences of Cubes Chapter 5: Factoring

#1-42: Completely factor the binomials, remember to factor out the GCF first when applicable (if a problem is prime say so).

1) $x^3 + 8$

2) $y^3 + 64$

3)
$$x^3 - 8$$

4) y³ - 64

5) $b^3 + 27$

6) x^3 + 125

7) *b*³ - 27

8) x³ - 125

9) x³ + 64

10) y³ + 27

11) $x^3 - 64$

12) $y^3 - 27$

13) 8*x*³ - 27

14) $125x^3 - 64$

15) $8x^3 + 27$

16) $125x^3 + 64$

17) 27*x*³ - 125

18) $64x^3 - 27$

19) $64x^3 - y^3$

20) $27x^3 - y^3$

21) $x^9 - y^3$

22) $y^6 - x^3$

23) 2*x*⁶ - 54

24) 3*x*⁶ - 81

25) $125x^9 - y^6$

26) $8y^9 - 125x^6$

27) 16*x*³ - 54

28) 3*x*³ - 81

29) $3x^3 + 24$

30) $2x^3 + 128$

31) $x^4 - 8x$

32) y⁴ - 64y

33) $6x^4 - 48x$

34) $3y^4 - 192y$

35) $8x^5 + 125x^2$

36) $3x^5 - 375x^2$

37) $-x^3 + 27$

38) $-y^3 + 64$

39) $64x^3 + 27$

40) $8x^3 + 125$

41) $x^6 + 8$

42) $x^9 + 64$