Section 1.4 Operations with sets – Union, Intersection and Complement

A **universal set** for a particular problem is a set which contains all the elements of all the sets in the problem.

A universal set is often denoted by a capital U, but sometimes the Greek letter ξ (xee) is used.

In this section we will create subsets of a given universal set and use set operations to create new subsets of the universal set.

There are three set operations we will learn in this section.

- **Complement:** The complement of a set A is symbolized by A' and it is the set of all elements in the universal set that are not in A.
- Intersection: The intersection of sets A and B is symbolized by A ∩ B and is the set containing all of the elements that are common to both set A and set B.
- **Union:** The union of set A and B is symbolized *A* ∪ *B* and is the set containing all the elements that are elements of set A or of set B or that are in both Sets A and B.

Here is a quick example to illustrate the 3 definitions.

Example: Let U be a universal set and A and B be subsets of U defined as follows.

U = {1,2,3,4,5} A = {1,2,3} B = {2,3,4}

Find A'

A' is all of the elements in the Universal set that are not in set A.

Answer: $A' = \{4, 5\}$

Find $A \cap B$ (This is asking me to find all of the elements that A and B have in common.)

Answer: $A \cap B = \{2,3\}$

Find $A \cup B$ (This is asking me to list all of the elements in A followed by all of the elements in B, then delete any elements that are written twice.)

 $A \cup B = \{1, 2, 3, 2, 3, 4\}$

Answer: $A \cup B = \{1, 2, 3, 4\}$

Example: Let U be a universal set and A and B be subsets of U defined as follows.

U = {a,b,c,d,e,f} A = {a,b,c} B = {c,d,e}

Find $A' \cap B$

First I need to find A', which is all of the elements in U that aren't in set A.

 $A' = \{d, e, f\}$

Now I can intersect the two sets.

 $A' \cap B = \{d,e,f\} \cap \{c,d,e\}$ (now find what the two sets have in common)

Answer: {d,e}

Find $A \cup B'$

First I need to find B'

 $B' = {a,b,f}$

 $A \cup B' = \{a,b,c\} \cup \{a,b,f\}$ (put all 6 elements in a big set then delete the duplicates)

= {a,b,c,a,b,f}

Answer: {a,b,c,f}

#1-10: Find the following sets.

U = {a,b,c,d,e}	$A = \{c,d,e\} B = \{a,c,d\}$
1) A'	2) B'
3) <i>A</i> ∪ <i>B</i>	4) $A' \cup B'$
5) <i>A</i> ∩ <i>B</i>	6) <i>A'</i> ∩ <i>B'</i>
7) <i>A'</i> ∩ <i>B</i>	8) <i>A</i> ∩ <i>B</i> ′
9) $A' \cup B$	10) $A \cup B'$

#11-20: Find the following sets.

U = {1,2,3,4,5}	A = {1,2,3} B = {5}
11) A'	12) B'
13) <i>A</i> ∪ <i>B</i>	14) $A' \cup B'$
15) <i>A</i> ∩ <i>B</i>	16) <i>A'</i> ∩ <i>B'</i>
17) <i>A'</i> ∩ <i>B</i>	18) <i>A</i> ∩ <i>B</i> ′
19) $A' \cup B$	20) <i>A</i> ∪ <i>B'</i>

Example: Let U be a universal set and A, B and C be subsets of U defined as follows.

U = {a,b,c,d,e,f} A = {a,b,c} B = {c,d,e} C = {d,e,f}

Find $A \cup B \cup C$

I need to work from left to right. First I will find $A \cup B$

 $A \cup B = \{a,b,c\} \cup \{c,d,e\}$ = $\{a,b,c,c,d,e\}$ = $\{a,b,c,d,e\}$

Now I can do the union C part. I can rewrite my problem as:

 $a,b,c,d,e \} \cup C$

= $\{a,b,c,d,e\} \cup \{d,e,f\}$ = $\{a,b,c,d,e,d,e,f\}$

Answer: {a,b,c,d,e,f}

Find $(\boldsymbol{B} \cup \boldsymbol{C})'$

I have to work on the inside of the parenthesis first.

So I will first find: $B \cup C$ $B \cup C = \{c,d,e\} \cup \{d,e,f\}$

 $B \cup C = \{c,d,e,d,e,f\}$

 $B \cup C = \{c,d,e,f\}$

Now I can do the complement.

I can replace the inside of the parenthesis with {c,d,e,f} and proceed to find its complement.

 $(B \cup C)' = (c,d,e,f)'$ (my answer will be all the elements of set U that are not in this set.)

Answer: {a,b}

Find $A \cup (B \cup C)'$

First I need to simplify the parenthesis $(B \cup C)'$ I just figured out that $(B \cup C)' = \{a,b\}$, so I will use the work I have already done

 $A \cup (B \cup C)'$

= A ∪ {a, b}

= {a,b,c} ∪ {a,b}

= {a,b,c,a,b}

Answer: {a,b,c}

Find $A' \cap (B \cap C')$

I need to simplify the inside of the parenthesis first.

 $(B \cap C')$ = {c,d,e} \cap {a,b,c} = {c} $A' \cap (B \cap C')$ = A' \cap {c} = {d,e,f} \cap {c} Answer: \0 (empty set)

#21-32: Find the following sets.

U = {1,2,3,4,5,6}	A = {1,2,3}	B = {2,3,4}	C = {1,5}
21) <i>A</i> ∩ <i>C</i>		22) <i>B</i> ∩ <i>C</i>	
23) <i>A</i> ∪ <i>C</i>		24) <i>B</i> ∪ <i>C</i>	
25) <i>A</i> ∩ <i>B</i> ∪ <i>C</i>		26) <i>A</i> ∪ <i>B</i>	∩ <i>C</i>
$27) B \cup C \cap A$		28) <i>B</i> ∩ <i>A</i>	U <i>C</i>
29) <i>A'</i> ∩ <i>B</i>		30) <i>A</i> ∩ <i>B'</i>	
31) $A' \cup B \cap C'$		32) <i>B'</i> ∩ <i>A</i>	∪ <i>C'</i>

#33-44: Find the following sets.

$U = \{a,b,c,d\} A = \{a,b,c\}$	$B = \{b,c,d\} \ C = \{a,d\}$
33) <i>A</i> ∩ <i>C</i> ′	34) <i>B'</i> ∩ <i>C</i>
35) <i>A'</i> ∪ <i>C'</i>	36) <i>B'</i> ∪ <i>C'</i>
37) $A' \cap B \cup C'$	38) <i>A'</i> ∪ <i>B'</i> ∩ <i>C</i>
$39) \ B' \cup C' \cap A$	40) $B' \cap A' \cup C$
41) $A' \cap B'$	42) <i>A</i> ∩ <i>B</i> ′
43) <i>A'</i> ∪ <i>B'</i> ∩ <i>C'</i>	44) $B \cap A' \cup C'$

#45 – 56: Find the following sets.

U = {1,2,3,4,5,6} S = {2,4,6}	T = {1,2,4} V = {4,5,6}
$45) S \cup (T \cap V)$	46) $(S \cup T) \cap V$
47) $(S \cup T)'$	48) $(V \cup S)'$
$49) S \cap (V \cap T')$	50) $(S' \cap V') \cup T$
51) $(S' \cup V') \cap T$	52) $S' \cup T \cap V'$
53) $T \cup V' \cup S'$	54) $T \cup V' \cap S'$
55) $(V \cap T)' \cup S$	56) $V \cup (S \cap T)'$

Answers: 1) {a,b} 3) {a,c,d,e} 5) {c,d} 7) {a} 9) {a,b,c,d} 11) {4,5} 13) {1,2,3,5} 15) Ø 17) {5} 19) {4,5} 21) {1} 23) {1,2,3,5} 25) {1,2,3,5} 27) {1,2,3} 29) {4} 31) {2,3,4,6} 33) {b,c} 35) {b,c,d} 37) {b,c,d} 39) {a,b,c} 41) Ø 43) Ø 45) {2,4,6} 47) {3,5} 49) {6} 51) {1,2} 53) {1,2,3,4,5} 55) {1,2,3,4,5,6}