Equilibrium Key

1. Answer the following three questions for the reaction of HF gas decomposing into hydrogen gas and fluorine gas at $78.5^{\circ} \mathrm{C}$.
a. Write out the balanced reaction and the K_{c} and K_{p} expressions.

$$
\begin{array}{ll}
2 \mathbf{H F}(\mathbf{g}) \leftrightarrows \mathbf{H}_{2}(\mathbf{g})+\mathbf{F}_{2}(\mathbf{g}) & \\
\mathbf{K c}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{F}_{2}\right]}{[\mathrm{HF}]^{2}} & \mathbf{K p}=\frac{\mathrm{P}_{\mathrm{H} 2} \mathrm{P}_{\mathrm{F} 2}}{\mathrm{P}_{\mathrm{HF}}^{2}}
\end{array}
$$

b. Given $K_{p}=4.25 \times 10^{-4}$ calculate K_{c}.
$\left(4.25 \times 10^{-4}\right)=K c[(0.08206)(351.5 K)]^{0}$ so $4.25 \times 10^{-4}=K c($ anything raised to 0 is equal to 1$)$
c. If I begin the reaction with 0.224 g of pure hydrogen fluoride in a 1550 mL closed flask, calculate all the equilibrium concentrations for each species in the reaction in units of moles/L.

$$
0.224 \mathrm{~g} \mathrm{HF}\left(\frac{1 \mathrm{~mol}}{20.0 \mathrm{~g}}\right)\left(\frac{1}{1.550 \mathrm{~L}}\right)=7.2258 \times 10^{-3} \mathrm{M}
$$

Set up ICE table

	$2 \mathrm{HF}(\mathrm{g})$	\leftrightarrows	$\mathrm{H}_{2}(\mathrm{~g})$
I	$+\mathrm{F}_{2}(\mathrm{~g})$		
I	.0072258	0	0
C	-2 x	+x	+x
E	$.0072258-2 \mathrm{x}$	x	x

Thus $4.25 \times 10^{-4}=x^{2} /(0.0072258-2 x)^{2}$
take the square root of both sides, no quadratic necessary

$$
\begin{aligned}
& 0.020616=x /(0.0072258-2 x) \\
& \text { collect terms } \\
& 1.4896 \times 10^{-4}-0.041232 x=1 x \\
& 1.4896 \times 10^{-4}=1.041232 \mathrm{x} \\
& \mathrm{x}=\left[\mathrm{H}_{2}\right]=\left[\mathrm{F}_{2}\right]=1.43 \times 10^{-4} \mathrm{M} \text { and }[\mathrm{HF}]=6.94 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

2. A 0.0240 mol sample of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is allowed to reach equilibrium with $\mathrm{NO}_{2}(\mathrm{~g})$ in a 0.372 L flask at $25.0^{\circ} \mathrm{C}$. Calculate the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ at equilibrium. $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=4.61 \times 10^{-3}$ initial molarity $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})=\left(\frac{.0240 \mathrm{~mol}}{.372 \mathrm{~L}}\right)=.06452 \mathrm{M}$

	$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	\leftrightarrows
I	$\mathbf{2} \mathrm{NO}_{2}(\mathrm{~g})$	
C	.06452	0
E	-x	+2 x
	$(.06452-\mathrm{x})$	2 x

$$
\begin{aligned}
& 4.61 \times 10^{-3}=(2 \times)^{2} /(0.06452-x) \\
& 4 x^{2}=-4.61 \times 10^{-3} \times+2.974 \times 10^{-4} \\
& 4 x^{2}+4.61 \times 10^{-3} \times-2.974 \times 10^{-4}=0
\end{aligned}
$$

quadratic formula with $a=4, b=+4.61 \times 10^{-3}$ and $c=-2.974 \times 10^{-4}$ $x=8.065 \times 10^{-3}$ (the other solution is negative and can't have negative concentration) thus $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.0565 \mathrm{M}$
3. Consider the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NO}_{2}(\mathrm{~g})$, where $\mathrm{K}_{\mathrm{c}}=5.7$ at $250^{\circ} \mathrm{C}$. If the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 0.350 M and that of NO_{2} is 1.20 M in a flask at $250^{\circ} \mathrm{C}$, will the reaction go forwards or backwards to reach equilibrium? (Must show work for credit)

$$
\mathbf{Q}=\left(\frac{(1.20)^{2}}{0.350}\right)=4.11 \text { which is less than } K \text { so reaction is going forwards till } \leftrightarrows \text { reached }
$$

4. A quantity of 2.40 moles of pure $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ gas was placed in an 8.00 L sealed flask. At 500 K , after equilibrium is established, there are 1.60 moles of the product gas SO_{2} present. Calculate K_{c} for the reaction. $\quad \mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
$2.40 \mathrm{~mol} / 8.00 \mathrm{~L}=.300 \mathrm{M}$ initial $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$
$1.60 \mathrm{~mol} / 8.00 \mathrm{~L}=.200 \mathrm{M} \mathrm{SO}_{2}(\mathrm{~g})$ at \leftrightarrows

	$\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrows$	$\mathrm{SO}_{2}(\mathrm{~g})$	$+\mathrm{Cl}_{2}(\mathrm{~g})$
I	.300	0	0
C	-x		+x
E	+x		
E	$(.300-\mathrm{x})$.200

So x must $=.200$ so $\mathrm{K}_{\mathrm{c}}=(.200)^{2} / .100=.400$
5. Consider this endothermic reaction: $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \leftrightarrows 2 \mathrm{CO}(\mathrm{g})$. To make the most CO gas:
a. You could increase the pressure. (true or false?) _ false
b. You could increase the volume. (true or false?) _ true, more space for more moles of gas
c. You could add more carbon monoxide gas. (true or false?) \qquad false \qquad
d. You could decrease the temperature. (true or false?) \qquad false (heat is a reactant)_
e. You could add more carbon. (true or false?) \qquad false solids don't affect K_
f. You could add a catalyst. (true or false?) false, catalysts make rxns reach \leftrightarrows faster $_{-}$
6. Write the equilibrium constant expressions K_{c} and K_{p} and the balanced reaction for the reaction between aqueous potassium sulfate and aqueous calcium nitrate.

$$
\begin{aligned}
& \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \leftrightarrows \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{c}}=\left[\mathrm{KNO}_{3}\right]^{2} /\left[\mathrm{K}_{2} \mathrm{SO}_{4}\right]\left[\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right] \quad \mathrm{K}_{\mathrm{p}}=\text { none, there are no gases }
\end{aligned}
$$

7. Calculate K_{p} for the formation of steam reaction if at equilibrium at $150^{\circ} \mathrm{C}$ the gas pressures are 0.145 atm for hydrogen, 0.108 atm for oxygen, and 15.4 atm for steam.

$$
\begin{aligned}
& 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \mathrm{K}_{\mathrm{p}}=\left[\mathrm{H}_{2} \mathrm{O}\right]^{2} /\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]=(15.4)^{2} /(.145)^{2}(.108)=1.04 \times 10^{5} \text { (product favored) }
\end{aligned}
$$

