Directions. There is only one best answer for multiple-choice questions. All calculations must show work with units for full credit. *Good Luck*. $\textcircled{\odot}$

- 1. Answer a-c using this balanced reaction: $2 \operatorname{Al}(s) + 6 \operatorname{HCl}(aq) \rightarrow 2 \operatorname{AlCl}_3(aq) + 3 \operatorname{H}_2(g)$
 - a. How many moles of hydrogen are produced when 4.25 moles of hydrochloric acid react?

4.25 mol HCl (3 mol H₂ / 6 mol HCl) = 2.13 mol H₂

- b. How many grams of hydrochloric acid are needed to react with 9.35 grams of aluminum?
 9.35 g Al (1 mol Al / 26.98 g Al)(6 mol HCl / 2 mol Al)(36.46 g HCl / 1 mol HCl) = 37.9 g HCl
- c. How many liters of hydrogen gas at STP are produced from reacting 12.5 grams of aluminum?
 12.5 g Al (1 mol Al / 26.98 g Al)(3 mol H₂ / 2 mol Al)(22.4 L H₂ / 1 mol H₂) = 15.6 L H₂
- 2. Balance and classify these reactions as (C) combination, (D) decomposition, (CB) combustion, (SR) single replacement, (DR) double replacement, and (N) acid base neutralization. type:___DR _____Na_2CO_3(aq) + ____MgCl_2(aq) \rightarrow ____MgCO_3(s) + _2__NaCl(aq) type:___D_ ___P_4O_{10}(l) \rightarrow __4 P (s) + _5__O_2(g) type:___SR_ ___3_Ca(s) + __2_AlCl_3(aq) \rightarrow __3__CaCl_2(aq) + __2_Al(s)
- 3. Write the products, states, and then balance these reactions. Write NR if no reaction.

a.
$$_C_5H_8(l) + _7_O_2(g) \Rightarrow __5CO_2(g) + 4H_2O(g) ______$$

b. $_Cu(s) + _MnBr_2(aq) \Rightarrow _NR______$
c. $_2_HI(aq) + _Sr(OH)_2(aq) \Rightarrow _2H_2O(l) + Srl_2(aq) ______$
d. $_2_Al(s) + _3_Ni(NO_3)_2(aq) \Rightarrow __3Ni(s) + 2Al(NO_3)_3(aq) ______$

- 4. Consider this reaction: $2 \operatorname{AgCl}(aq) + \operatorname{Cd}(s) \rightarrow \operatorname{CdCl}_2(aq) + 2 \operatorname{Ag}(s)$
 - a. What is reduced? ____ Ag in AgCl(aq) ____
 - b. What is oxidized? ____ Cd(s) _____
- 5. What holds the sulfur atom to the hydrogen atom in one molecule of hydrogen sulfide gas, H_2S , the gas partly responsible for the rotten egg smell and flatulence?
 - a. Ionic bonds b. **polar covalent bonds** c. H bridge force d. dipole-dipole forces e. nonpolar covalent bonds
- 6. What holds HF molecules with other HF molecules?
 - a. London forces b. polar covalent bonds c. **H bridge force** d. dipole-dipole forces e. nonpolar covalent bonds
- 7. What holds Br_2 molecules with other Br_2 molecules in liquid bromine?
 - a. London forces b. polar covalent bonds c. H bridge force d. dipole-dipole forces e. nonpolar covalent bonds
- 8. Answer the following based on the comparison of liquid butane, C₄H₁₀, and liquid butanol, C₄H₉OH?
 - a. Which has the higher IMF? ____butanol_____
 - b. Which has the higher Vapor Pressure? __butane____
 - c. Which has the lower boiling point? ___butane____
 - d. Which has the higher surface tension? __butanol____
 - e. Which has the lower viscosity? ___butane____
- 9. What is the highest IMF you expect to see in samples of millions of molecules of:
 - a. HBr _dipole-dipole_____b. H₂O___H-bridging_____c. Cl₂ ____London____

10. Answer the following according to this heating curve graph below.

- 12. Which of the following is most likely to dissolve in benzene, C₆H₆ (l)? a. NaCl b. N₂ c. NH₃ d. HF e. Na₂SO₄
- 13. Popular as a salad dressing, vinegar and oil don't mix so we call them:a. solubleb. insolublec. miscibled. immisciblee. undissolved
- 14. What is the mass % if 87.45 grams of KOH is dissolved in 238 grams of water?

% = 87.45 / (87.45 + 238) x 100 = 26.9 %

15. Calculate the molarity if 1.525 grams of NaC₂H₃O₂, is dissolved in 755 mL of water.

mol = 1.525 g (1 mol / 82.04 g) = 0.018588493 molL solution = 755 mL (1 L / 1000 mL) = 0.755 LM = 0.018588493 mol / 0.755 L = 0.0246 mol/L

16. How many moles are in 6.15×10^{24} atoms of calcium?

6.15 x 10²⁴ atoms Ca (1 mol / 6.02 x 10²³ atoms) = 10.2 mol Ca

17. How many grams are in 0.8735 moles of AgNO₃?

0.8735 mol AgNO₃ (169.88 g / mol) = 148.4 g AgNO₃

18. How many liters are in 55.3 grams of CO_2 gas at STP?

55.3 g CO₂ (1 mol / 44.01 g) (22.4 L / 1 mol) = 28.1 L CO₂

Bonus: How many atoms of sodium are in 22.99 grams? (No calculations needed) 6.02 x 10²³ atoms _