CHM 130

\qquad KEY

Directions. There is only one best answer for multiple-choice questions. All calculations must show work with units for full credit. Good Luck. ©

1. Answer a-c using this balanced reaction: $2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
a. How many moles of hydrogen are produced when 4.25 moles of hydrochloric acid react?
$4.25 \mathrm{~mol} \mathrm{HCl}\left(3 \mathrm{~mol} \mathrm{H}_{2} / 6 \mathrm{~mol} \mathrm{HCl}\right)=2.13 \mathrm{~mol} \mathrm{H}_{2}$
b. How many grams of hydrochloric acid are needed to react with 9.35 grams of aluminum? $9.35 \mathrm{~g} \mathrm{Al}(1 \mathbf{~ m o l ~ A l ~ / ~} 26.98 \mathrm{~g} \mathrm{Al})(6 \mathrm{~mol} \mathrm{HCl} / 2 \mathrm{~mol} \mathrm{Al})(36.46 \mathrm{~g} \mathrm{HCl} / 1 \mathrm{~mol} \mathrm{HCl})=37.9 \mathrm{~g} \mathrm{HCl}$
c. How many liters of hydrogen gas at STP are produced from reacting 12.5 grams of aluminum? $12.5 \mathrm{~g} \mathrm{Al}\left(1 \mathrm{~mol} \mathrm{Al}^{2} 26.98 \mathrm{~g} \mathrm{Al}\right)\left(3 \mathrm{~mol} \mathrm{H}_{2} / 2 \mathrm{~mol} \mathrm{Al}\right)\left(22.4 \mathrm{~L} \mathrm{H}_{2} / 1 \mathrm{~mol} \mathrm{H}_{2}\right)=15.6 \mathrm{~L} \mathrm{H}_{2}$
2. Balance and classify these reactions as (C) combination, (D) decomposition, (CB) combustion, (SR) single replacement, (DR) double replacement, and (N) acid base neutralization. type:__DR _ ___ $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\ldots \mathrm{MgCl}_{2}(\mathrm{aq}) \rightarrow \ldots \quad \mathrm{MgCO}_{3}(\mathrm{~s})+$ _ $^{2} \mathrm{NaCl}(\mathrm{aq})$ type:_ D_ __ $\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{l}) \rightarrow$ _ $4 \mathrm{P}(\mathrm{s})+$ _ $_{-} \mathrm{O}_{2}(\mathrm{~g})$

3. Write the products, states, and then balance these reactions. Write NR if no reaction.
a. $\quad _\mathrm{C}_{5} \mathrm{H}_{8}(\mathrm{l})+\ldots$ 7_O $_{2}(\mathrm{~g}) \rightarrow$ \qquad $5 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ \qquad
b. $\quad \ldots \mathrm{Cu}(\mathrm{s})+\ldots \mathrm{MnBr}_{2}(\mathrm{aq}) \rightarrow \ldots \quad \mathrm{NR}$
c. \quad _ 2 _ $\mathrm{HI}(\mathrm{aq})+\ldots \mathrm{Sr}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \ldots \quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{Srl}_{2}(\mathrm{aq})$
d. _2__Al(s) + __3_Ni(NO3) $)_{2}(\mathrm{aq}) \rightarrow$ _ $3 \mathrm{Ni}(\mathrm{s})+2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})$
4. Consider this reaction: $2 \mathrm{AgCl}(\mathrm{aq})+\mathrm{Cd}(\mathrm{s}) \rightarrow \mathrm{CdCl}_{2}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
a. What is reduced? \qquad Ag in $\mathrm{AgCl}(\mathrm{aq})$ \qquad
b. What is oxidized? \qquad Cd(s) \qquad
5. What holds the sulfur atom to the hydrogen atom in one molecule of hydrogen sulfide gas, $\mathrm{H}_{2} \mathrm{~S}$, the gas partly responsible for the rotten egg smell and flatulence?
a. Ionic bonds
b. polar covalent bonds
c. H bridge force
d. dipole-dipole forces e. nonpolar covalent bonds
6. What holds HF molecules with other HF molecules?
a. London forces
b. polar covalent bonds
c. H bridge force
d. dipole-dipole forces e. nonpolar covalent bonds
7. What holds Br_{2} molecules with other Br_{2} molecules in liquid bromine?
a. London forces
b. polar covalent bonds
c. H bridge force
d. dipole-dipole forces e. nonpolar covalent bonds
8. Answer the following based on the comparison of liquid butane, $\mathrm{C}_{4} \mathrm{H}_{10}$, and liquid butanol, $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$?
a. Which has the higher IMF? \qquad butanol \qquad
b. Which has the higher Vapor Pressure? __butane \qquad
c. Which has the lower boiling point? \qquad butane \qquad
d. Which has the higher surface tension? __butanol \qquad
e. Which has the lower viscosity? ___butane \qquad
9. What is the highest IMF you expect to see in samples of millions of molecules of:
a. HBr _dipole-dipole \qquad b. $\mathrm{H}_{2} \mathrm{O}$ \qquad H-bridging \qquad c. Cl_{2} \qquad London \qquad
10. Answer the following according to this heating curve graph below.

a. At which point is melting or freezing occurring? \qquad B \qquad
b. At which point is there liquid only? \qquad C
c. At which point is there solid only? \qquad A \qquad
d. At which point is boiling or condensation occurring? \qquad D \qquad
11. A solution is defined as a \qquad solute \qquad dissolved in a \qquad _.
12. Which of the following is most likely to dissolve in benzene, $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})$?
a. NaCl
b. \mathbf{N}_{2}
c. NH_{3}
d. HF
e. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
13. Popular as a salad dressing, vinegar and oil don't mix so we call them:
a. soluble
b. insoluble
c. miscible
d. immiscible
e. undissolved
14. What is the mass \% if 87.45 grams of KOH is dissolved in 238 grams of water?

$$
\%=87.45 /(87.45+238) \quad x 100=26.9 \%
$$

15. Calculate the molarity if 1.525 grams of $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, is dissolved in 755 mL of water.
$\mathrm{mol}=1.525 \mathrm{~g}(1 \mathrm{~mol} / 82.04 \mathrm{~g})=0.018588493 \mathrm{~mol}$
L solution $=755 \mathrm{~mL}(1 \mathrm{~L} / 1000 \mathrm{~mL})=0.755 \mathrm{~L}$
$M=0.018588493 \mathrm{~mol} / 0.755 \mathrm{~L}=0.0246 \mathrm{~mol} / \mathrm{L}$
16. How many moles are in 6.15×10^{24} atoms of calcium?
6.15×10^{24} atoms $\mathrm{Ca}\left(1 \mathrm{~mol} / 6.02 \times 10^{23}\right.$ atoms $)=10.2 \mathrm{~mol} \mathrm{Ca}$
17. How many grams are in 0.8735 moles of AgNO_{3} ?
$0.8735 \mathrm{~mol} \mathrm{AgNO}_{3}(169.88 \mathrm{~g} / \mathrm{mol})=148.4 \mathrm{~g} \mathrm{AgNO}_{3}$
18. How many liters are in 55.3 grams of CO_{2} gas at STP?
$55.3 \mathrm{~g} \mathrm{CO}_{2}(1 \mathrm{~mol} / 44.01 \mathrm{~g})(22.4 \mathrm{~L} / 1 \mathrm{~mol})=28.1 \mathrm{LCO}_{2}$

Bonus: How many atoms of sodium are in 22.99 grams? (No calculations needed) 6.02×10^{23} atoms _

