Chapter 4

Reactions in Aqueous Solution

Properties of Aqueous Solutions

- Substances behave differently when they are placed in water, specifically ionic versus covalent compounds.
- One breaks apart in water, the other does not.
- Which one is more likely to be pulled apart by water molecules?
- Electrolytes are ionic and strong acid solutions (e.g., GatoradeTM); Nonelectrolytes are covalent compounds (e.g., sugar); weak electrolytes are in between.

Electrolytic Properties

- Strong electrolyte: substance that, when dissolved in water, results in a solution that can conduct electricity (NaCl) soluble ionic compounds, strong acids
- Weak electrolyte: substance that is a poor conductor of electricity when dissolved in water (CH₃COOH – vinegar) insoluble ionic compounds, weak acids
- Nonelectrolyte: substance that doesn't conduct electricity when dissolved in water (CH₃OH – methanol), covalent compounds

Electrolytes in Aqueous Solutions

Strong Electrolytes	Weak Electrolytes	Nonelectrolytes
	CH CO H	H0
	HE	CH OH (methyl alcohol)
HNO		C H OH (athyl alcohol)
H SO		
KBr		Most compounds of carbon
NaCl		(organic compounds)
NaOH, KOH		
Other soluble ionic compounds		
le 4-1 Chemistry, 5/e 208 Pearson Prentice Hall. Jor.		

Properties of Aqueous Solutions

- Most reactions in general chemistry take place in an aqueous environment. What does that mean?
- Terms:
 - Solution: homogeneous mixture of two or more substances
 - ♦ Solute: substance present in smaller amount
 - Solvent: substance present in greater amount
 - Aqueous solution: solvent is water

Ways Reactions Occur

Three general categories:

- Precipitation: insoluble (solid) product is formed from aqueous solutions
- Acid-base neutralization: acid and base react to form water and a salt (ionic compound)
- Oxidation-Reduction: electrons are transferred between atoms in reaction
 - Combination
 - Decomposition
 - Single-replacement (metal or hydrogen)

Precipitation (Double-Replacement) Reactions

- Precipitation reactions always begin with two ionic compounds.
- Example: NaCl (aq) + AgNO₃ (aq) \rightarrow ?
- Draw these compounds in two separate aqueous environments. What are the possible products when they are combined?
- Write formulas of products (based on charges), predict phases (Solubility Rules on back of periodic table), and balance the equation.

Solubility Rules – on periodic table

If not covered by the rules, it is probably insoluble. 10

Solubility Rules

- Determine if the following ionic compounds will be soluble (aq) or insoluble (s) in water:
- K₂CO₃
- BaSO₄
- PbI₂
- NaClO₄
- Ag_2S
- (NH₄)₃PO₄
- Cu(OH)₂

Solubility Rules Answers

• Determine if the following ionic compounds will be soluble (aq) or insoluble (s) in water:

insoluble (s)

- K₂CO₃ soluble (aq)
- BaSO₄ insoluble (s)
- PbI₂
- NaClO₄ soluble (aq)
- Ag₂S insoluble (s)
- (NH₄)₃PO₄ soluble (aq)
- insoluble (s)
- Cu(OH)₂

Molecular, Ionic, and Net Ionic Equations

- There are 3 ways to represent ppt reactions:
 - As whole compounds (molecular equation)
 - ♦ As ionic species (ionic equation) more accurate
 - As participants in reaction (net ionic equation)
- Any aqueous ionic substance is written as a compound (e.g., AgNO₃), but this isn't accurate. What does this look like in water? It is Ag⁺ and NO₃⁻ ions
- Solids, liquids, and gases remain as compounds.

Formation of Silver Chloride

- Molecular equation:
- NaCl(aq) + AgNO₃(aq) → AgCl(s) + NaNO₃(aq)
 Ionic equation (write separate ions for soluble (aq) compounds):
 - Na⁺(aq) + Cl⁻(aq) + Ag⁺(aq) + NO₃⁻(aq) \rightarrow AgCl(s) + Na⁺(aq) + NO₃⁻(aq)
- Net ionic equation (cancel any identical ion on both sides of the equation, called spectator ions): Ag⁺(aq) + Cl⁻(aq) → AgCl(s)
- Note: s, l, and g stay together!!!!!

Ag⁺/Cl⁻ ions

Chemistry humor, ha ha!

Precipitation Reactions

- Reaction of lead (II) nitrate and potassium iodide.
 What is the precipitate?
- Write the molecular, ionic, and net ionic equations.
- Worked Ex. 4.2 4.5;
 Problems 4.4 4.8

Acid-Base (Double-Replacement) Reactions

- Acid: substance that breaks apart in water to form H^{*} (e.g., HCI, HNO₃, CH₃COOH, lemon, lime, vitamin C).
 HA(ag) → H^{*}(ag) + A^{*}(ag)
- Base: substance that breaks apart in water to form OH' (e.g., NH₃, Drano[™], Milk of Magnesia[™])
 MOH(aq) → M⁺(aq) + OH⁻(aq)

17

Common Acids and Bases

HCIO4	Perchloric acid	NaOH	Sodium hydroxide	Strong
HBr	Hydrobromic acid	Ba(OH)	Barium hydroxide	A
HCI HNO3	Hydrochloric acid Nitric acid	Ca(OH) ₂	Calcium hydr oxide	1
H ₃ PO ₄	Phosphoric acid	NH ₃	Ammonia	Weak
HF	Hydrofluoric acid			base
	HCIO ₄ H ₂ SO ₄ HBr HCI HNO ₃ H ₃ PO ₄ HF	HClO ₄ Perchloric acid H ₂ SO ₄ Sulfuric acid HBr Hydrobromic acid HCl Hydrochloric acid HNO ₃ Nitric acid H ₂ PO ₄ Phosphoric acid HF Hydrofluoric acid	HClO ₄ Perchloric acid NaOH H ₅ O ₄ Sulfuric acid KOH HBr Hydrobromic acid Ba(OH) ₂ HCl Hydrobronic acid Hydrobloric acid HNO ₃ Nitric acid H ₃ PO ₄ Phosphoric acid Hydrofluoric acid	HClO ₄ Perchloric acid H ₅ CO ₄ Sulfuric acid HBr Hydrobromic acid HCl Hydrobromic acid HNO ₃ Nitric acid H ₃ PO ₄ Phosphoric acid HF Hydrofluoric acid

- Strong acids: HCI, HBr, HI, HCIO₄, H₂SO₄, HNO₃
- Strong bases: LiOH, KOH, NaOH, RbOH, CsOH, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂

Acid-Base Neutralization

- Neutralization reaction: reaction between acid and base; products are usually a salt (ionic compound) and water
- $HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H_2O(l)$
- Acid + base → salt + water
- What are the ionic and net ionic equations for these reactions?
- KOH (aq) + H₂SO₄ (aq) →
- NH₃ (aq) + HCl (aq) →
- Worked Ex. 4.6, 7; Problems 4.9, 4.10, 11

Group Work

- Determine the products of the reaction. Identify the phase of **each compound**, and balance the equation. Also write the ionic and net ionic equations.
- Molecular: Na₂S + Cr(NO₃)₃ →
- Complete Ionic:
- Net Ionic:

Group Answers

- Molecular: 3Na₂S(aq) + 2Cr(NO₃)₃(aq) → Cr₂S₃(s) + 6NaNO₃(aq)
- Complete Ionic: 6Na⁺(aq) + 3S²⁻(aq) + 2Cr³⁺(aq) + 6NO₃⁻(aq) → Cr₂S₃(s) + 6Na⁺(aq) + 6NO₃⁻(aq)
- Net Ionic: $2Cr^{3+}(aq) + 3S^{2-}(aq) \rightarrow Cr_2S_3(s)$

Complete/Balance These Equations

- Complete and balance these equations. Write ionic and net ionic equations, if applicable.
- Na₂S(aq) + CuCl₂(aq) →
- KNO₃(aq) + CaCl₂(aq) →
- KOH(aq) + H₂SO₄(aq) →

Complete/Balance These Equations

- Na₂S(aq) + CuCl₂(aq) → 2 NaCl(aq) + CuS(s)
 Cu²⁺(aq) + S²⁻(aq) → CuS(s)
- 2 KNO₃(aq) + CaCl₂(aq) → 2 KCl(aq) + Ca(NO₃)₂(aq)
 No reaction
- 2KOH(aq) + H₂SO₄(aq) → 2H₂O (I) + K₂SO₄ (aq)
 H⁺ (aq) + OH⁻ (aq) → H₂O (I)

Oxidation-Reduction Reactions

- Oxidation-Reduction (redox) reactions: electron-transfer reactions
- When iron rusts, it loses electrons to form a cation, oxygen gain electrons to form an anion: 4 Fe(s) + 3 O₂(g) → 2 Fe₂O₃(s)
- Use oxidation number rules to determine gain and loss of electrons.
- Oxidation numbers are assigned as if elements in compounds completely transferred electrons (like in ionic compounds).

Assigning Oxidation Numbers

- 1) An atom (or molecule) in its elemental state has an oxidation number of 0.
- 2) An atom in a monatomic ion (Na⁺, Cl⁻) has an oxidation number identical to its charge.
- 3a) Hydrogen has an oxidation number of +1, unless it is combined with a metal, in which case it has an oxidation number of -1.
- 3b) Oxygen usually has an oxidation number of -2. Oxygen in peroxides (O₂²⁻) has an oxidation number of -1.

Rules continued

- 3c) Halogens usually have an oxidation number of -1 (except when bonded to oxygen or in polyatomic ions).
- 4) The sum of oxidation numbers is 0 for a neutral compound and is equal to the net charge for a polyatomic ion.
 (Example: NaCl = 0, SO₄²⁻ = -2)
 - 4a) For binary ionic compounds, the position of the element in the periodic table may be useful:
 - ♦ Group IA: +1; Group IIA: +2; Group VIIA: -1; Group VIA: -2; Group VA: -3

Example

- H₂SO₄
 - H = +1; O = -2
 - S is unknown, so leave this for last.
 - The overall charge on this compound is 0.
 - Use algebra to solve for S:
 - 2(+1) + 1(x) + 4(-2) = 0
- Solve for each element: MgCr₂O₇
- Worked Ex. 4.8; Problem 4.13

Assigning Oxidation Numbers

• Determine values of the oxidation number of <u>each element</u> in these compounds or ions: H_2O SO_2 CCl_4 H_2O_2 $Fe_3(PO_4)_2$ MnO_4^- NaNO₃ $KClO_4$

Assigning Oxidation Numbers

Oxidation-Reduction Reactions

27

- Oxidized: atom, molecule, or ion becomes more positively charged
 - Loss of electrons is oxidation (LEO)
- *Reduced*: atom, molecule, or ion becomes less positively charged (reduced charge)
 - Gain of electrons is reduction (GER)
- Or: OIL RIG (oxidation is loss; reduction is gain)

Oxidation-Reduction Reactions

- The substance oxidized causes the other substance to be reduced and is called the reducing agent.
- The substance reduced causes the other substance to be oxidized and is called the <u>oxidizing agent</u>.
- 4 Fe(s) + 3O₂(g) \rightarrow 2Fe₂O₃(s)
- Worked Ex. 4.9; Problems 4.14, 4.15

Oxidation-Reduction Reactions

- Identify the element or ion oxidized/reduced. Also identify the oxidizing agent and the reducing agent.
- $Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$

Group Work

- Identify the oxidation number of **each element** in the compounds or ions below:
- Ba(ClO₃)₂
- SO₃²⁻
- For the reaction below, identify what has been oxidized and reduced; identify the oxidizing agent and the reducing agent.
- $Cu(s) + 2AgNO_3(aq) \rightarrow 2Ag(s) + Cu(NO_3)_2(aq)$

Group Answers	
• Ba: +2	S: +4

- CI: +5
- O: -2
- $Cu(s) + 2AgNO_3(aq) \rightarrow 2Ag(s) + Cu(NO_3)_2(aq)$

O: -2

- Cu: oxidized Ag⁺: reduced
- Cu: reducing agent AgNO₃: oxidizing agent

Redox Reactions

- Combination (1 product)
 - ♦ Na(s) + Cl₂(g) →
- Decomposition (1 reactant) usually give off gases
 - ♦ CuCO₃(s) \rightarrow
- Single Replacement (or Displacement) (start and end with an element and a compound)
 ↓ Zn(s) + HCl(aq) →

Combination Reactions

- element + element \rightarrow compound • H₂(g) + O₂(g) \rightarrow
- $\bullet \ \text{metal + nonmetal} \rightarrow \text{ionic compound} \\$
 - Na(s) + $\operatorname{Cl}_2(g) \rightarrow$
- nonmetal + nonmetal → covalent compound
 - $C(s) + O_2(g) \rightarrow$
- Why are these redox reactions?

Combination Reactions

Decomposition Rxns Produce Gases

- Compound → 2 elements; element + compound; or 2 compounds
- Oxides, peroxides
 - ♦ Give off O₂
- Nitrates
- ♦ Give off NO₂ , NO₂⁻
- Carbonates
 Give off CO₂
- Ammonium salts
- ♦ Give off NH₃

Decomposition Reactions • NH₄Cl (s) $\xrightarrow{\wedge}$ • NiCO₃(s) $\xrightarrow{\wedge}$ • CuO(s) $\xrightarrow{\wedge}$

Δ.,

O₂(g)

2Hg(/) +

Single-Displacement Reactions

- element + compound → compound + element (The more metallic/active element in the compound is displaced.)
- Metal Displacement
 Zn(s) + Cu(NO₃)₂(aq) → Cu(s) + Zn(NO₃)₂(aq)
- Hydrogen Displacement
 - $\blacklozenge \operatorname{Mg}(s) + \operatorname{HCl}(aq) \to \operatorname{MgCl}_2(aq) + \operatorname{H}_2(g)$

42

2HgO(s)

The solution turns blue as Cu²⁺ ions are formed

Single Displacement: Fe + Cu(NO₃)₂

Activity Se	TABLE 4.	.3 A Partial Activit	y Series of the Elements
 The higher the metal on the activity series, 	Strongly reducing	$ \begin{array}{cccc} Li & \rightarrow & Li^+ + e^- \\ K & \rightarrow & K^+ + e^- \\ Ba & \rightarrow & Ba^{2+} + 2 e^- \\ Ca & \rightarrow & Ca^{2+} + 2 e^- \\ Na & \rightarrow & Na^+ + e^- \end{array} $	These elements react rapidly with aqueous H ⁺ ions (acid) or with liquid H ₂ O to release H ₂ gas.
the more active that metal.		$\begin{array}{ccc} Mg \rightarrow & Mg^{2+} + 2 e^- \\ AI \rightarrow & AI^{3+} + 3 e^- \\ Mn \rightarrow & Mn^{2+} + 2 e^- \\ Zn \rightarrow & Zn^{2+} + 2 e^- \\ Cr \rightarrow & Cr^{3+} + 3 e^- \\ Fe \rightarrow & Fe^{2+} + 2 e^- \end{array}$	These elements react with aqueous H ⁺ ions or with steam t release H ₂ gas.
 Translation: higher metals on the chart 		$\begin{array}{c} \text{Co} \rightarrow \text{Co}^{2+} + 2 \text{e}^- \\ \text{Ni} \rightarrow \text{Ni}^{2+} + 2 \text{e}^- \\ \text{Sn} \rightarrow \text{Sn}^{2+} + 2 \text{e}^- \end{array}$ $\begin{array}{c} \text{H}_2 \rightarrow 2 \text{H}^+ + 2 \text{e}^- \end{array}$	These elements react with aqueous H ⁺ ions to release H ₂ ga
will form ions as products.	Weakly reducing	$ \begin{array}{c} Cu \rightarrow Cu^{2+}+2\mathrm{e}^- \\ Ag \rightarrow Ag^++\mathrm{e}^- \\ Hg \rightarrow Hg^{2+}+2\mathrm{e}^- \\ Pt \rightarrow Pt^{2+}+2\mathrm{e}^- \\ Au \rightarrow Au^{3+}+3\mathrm{e}^- \end{array} $	These elements do not react with aqueous H ⁺ ions to release H ₂ .

Combustion Reactions

- Burning hydrocarbons
- $C_xH_yO_z + O_2(g) \rightarrow CO_2(g) + H_2O(g)$
- Methanol, CH₃OH
- $_{CH_3OH}(I) + _{O_2}(g) \rightarrow _{CO_2}(g) + _{H_2O}(g)$

Classify (and balance) these rxns

8. HgO(s) →

9. LiOH(aq) + H₂SO₄(aq) \rightarrow 10. Na₂CrO₄(aq) + Ni(NO₃)₂(aq) \rightarrow 11. Li(s) + O₂(g) \rightarrow 12. Mg(OH)₂(aq) + 2HCl(aq) \rightarrow 13. NH₃(g) + HCl(g) \rightarrow 14. NiCO₃(s) $\xrightarrow{\wedge}$ 15. Ca(s) + F₂(g) \rightarrow

Classify these reactions by type

 $\begin{array}{l} \label{eq:single disp. 1. } Co(s) + 2AgNO_3(aq) \rightarrow Co(NO_3)_2(aq) + 2Ag(s) \\ \mbox{Single disp. 2. } Fe(s) + 2HCl(aq) \rightarrow FeCl_2(aq) + H_2(g) \\ \mbox{Decomp.} 3. Na_2CO_3(s) \rightarrow Na_2O(s) + CO_2(g) \\ \mbox{Single disp. 4. } Ca(s) + 2H_2O(l) \rightarrow Ca(OH)_2(aq) + H_2(g) \\ \mbox{Decomp.} 5. CaCO_3(s) + heat \rightarrow CaO(s) + CO_2(g) \\ \mbox{Acid-base neut. 6. } HClO_4(aq) + KOH(aq) \rightarrow KOIO_4(aq) + H_2O(l) \\ \mbox{Precip.} 7. BaCl_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2NaCl(aq) \\ \mbox{Decomp.} 8. 2HgO(s) \rightarrow 2Hg(l) + O_2(g) \\ \mbox{Acid-base neut. 9. } 2LiOH(aq) + H_2SO_4(aq) \rightarrow L_2SO_4(aq) + 2H_2O(l) \\ \mbox{Precip.} 10. Na_2CO_4(aq) + H_2SO_4(aq) \rightarrow 2NaNO_3(aq) + NiCrO_4(s) \\ \mbox{Combo.} 11. ALi(s) + O_2(g) \rightarrow 2Li_2O(s) \\ \mbox{Acid-base neut. 12. } Mg(OH)_2(aq) + 2HCl(aq) \rightarrow 2MgCl_2(aq) + H_2O(l) \\ \mbox{Combo.} 13. NH_3(g) + HCl(g) \rightarrow NH_4Cl(s) \\ \mbox{Decomp.} 14. NiCO_3(s) > NiO(s) + CO_2(g) \\ \mbox{Combo.} 15. Ca(s) + F_2(g) \rightarrow CaF_2(g) \\ \end{array}$

Group Work

- Determine what type of reaction will happen for each set of reagents below.
- Predict products of the following reactions.
- Write correct phases for the products and balance each equation:
- ____ AI (s) + ____ NaNO₃ (aq) →
- ____ Na (s) + ____ O₂ (g) \rightarrow
- ____ Na₂SO₄ (aq) + ____ Pb(NO₃)₂ (aq) \rightarrow

Group Answers

- SR: Al (s) + NaNO₃ (aq) → No reaction
- Combo: 4 Na (s) + O₂ (g) → 2 Na₂O (s)
- DR/PPT: Na₂SO₄ (aq) + Pb(NO₃)₂ (aq) → 2NaNO₃ (aq) + PbSO₄ (s)

The End

• Given reactants, be able to identify the reaction type, predict the products of reaction (with correct phases), and balance the equation – similar to the worksheet questions!