

Electrolytes in Aqueous Solutions

TABLE 4.1	Electrolyte Classification of Some Common Substances	
Strong Electrolytes	Weak Electrolytes	Nonelectrolytes
$\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{H}_{2} \mathrm{O}$
HClO_{4}	HF	$\mathrm{CH}_{3} \mathrm{OH}$ (methyl alcohol)
HNO_{3}		$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethyl alcohol)
$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (sucrose)	
KBr		Most compounds of carbon
NaCl		
$\mathrm{NaOH}, \mathrm{KOH}$		
Other soluble ionic compounds)		
compounds		

Strong/Weak Electrolytes

Properties of Aqueous Solutions

- Substances behave differently when they are placed in water, specifically ionic versus covalent compounds.
- One breaks apart in water, the other does not.

- Which one is more likely to be pulled apart by water molecules?
- Electrolytes are ionic and strong acid solutions (e.g., Gatorade ${ }^{\text {TM }}$); Nonelectrolytes are covalent compounds (e.g., sugar); weak electrolytes are in between.

Electrolytic Properties

- Strong electrolyte: substance that, when dissolved in water, results in a solution that can conduct electricity (NaCl) soluble ionic compounds, strong acids
- Weak electrolyte: substance that is a poor conductor of electricity when dissolved in water $\left(\mathrm{CH}_{3} \mathrm{COOH}\right.$ - vinegar) insoluble ionic compounds, weak acids
- Nonelectrolyte: substance that doesn't conduct electricity when dissolved in water $\left(\mathrm{CH}_{3} \mathrm{OH}\right.$ - methanol), covalent compounds

Properties of Aqueous Solutions

- Most reactions in general chemistry take place in an aqueous environment. What does that mean?
- Terms:
- Solution: homogeneous mixture of two or more substances
- Solute: substance present in smaller amount
- Solvent: substance present in greater amount
- Aqueous solution: solvent is water

Ways Reactions Occur

- Three general categories:

- Precipitation: insoluble (solid) product is formed from aqueous solutions
- Acid-base neutralization: acid and base react to form water and a salt (ionic compound)
- Oxidation-Reduction: electrons are transferred between atoms in reaction
- Combination
- Decomposition
- Single-replacement (metal or hydrogen)

Precipitation (Double-Replacement) Reactions

- Precipitation reactions always begin with two ionic compounds.
- Example: $\mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow$?
- Draw these compounds in two separate aqueous environments. What are the possible products when they are combined?
- Write formulas of products (based on charges), predict phases (Solubility Rules on back of periodic table), and balance the equation.

Solubility Rules - on periodic table

If not covered by the rules, it is probably insoluble.

Solubility Rules

- Determine if the following ionic compounds will be soluble (aq) or insoluble (s) in water:
- $\mathrm{K}_{2} \mathrm{CO}_{3}$
- BaSO_{4}
- PbI_{2}
- NaClO_{4}
- $\mathrm{Ag}_{2} \mathrm{~S}$
- $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
- $\mathrm{Cu}(\mathrm{OH})_{2}$

Solubility Rules Answers

- Determine if the following ionic compounds will be soluble (aq) or insoluble (s) in water:
- $\mathrm{K}_{2} \mathrm{CO}_{3} \quad$ soluble (aq)
- $\mathrm{BaSO}_{4} \quad$ insoluble (s)
- $\mathrm{PbI}_{2} \quad$ insoluble (s)
- $\mathrm{NaClO}_{4} \quad$ soluble (aq)
- $\mathrm{Ag}_{2} \mathrm{~S} \quad$ insoluble (s)
- $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \quad$ soluble (aq)
- $\mathrm{Cu}(\mathrm{OH})_{2} \quad$ insoluble (s)

Molecular, Ionic, and Net Ionic Equations

- There are 3 ways to represent ppt reactions: - As whole compounds (molecular equation)
- As ionic species (ionic equation) - more accurate
- As participants in reaction (net ionic equation)
- Any aqueous ionic substance is written as a compound (e.g., AgNO_{3}), but this isn't accurate. What does this look like in water? It is Ag^{+}and $\mathrm{NO}_{3}{ }^{-}$ions
- Solids, liquids, and gases remain as compounds.

$-\mathrm{NaCl}(a q)+\mathrm{AgNO}_{3}(a q) \rightarrow \mathrm{AgCl}(s)+\mathrm{NaNO}_{3}(a q)$
- Ionic equation (write separate ions for soluble (aq) compounds):
- $\mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)+\mathrm{Ag}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{AgCl}(s)+$ $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$
- Net ionic equation (cancel any identical ion on both sides of the equation, called spectator ions): $\mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightarrow \mathrm{AgCl}(s)$
- Note: s, I, and g stay together!!!!!

Precipitation Reactions

- Reaction of lead
(II) nitrate and potassium iodide. What is the precipitate?
- Write the molecular, ionic, and net ionic equations.
Worked Ex. 4.2 - 4.5 Problems 4.4-4.8

Common Acids and Bases

- You need to KNOW these!!!

TABLE 4.2 Some Common Acids and Bases

Strong acid	HClO_{4} $\mathrm{H}_{2} \mathrm{SO}_{4}$ HBr HCl HNO_{3}	Perchloric acid Sulfuric acid Hydrobromic acid Hydrochloric acid Nitric acid	NaOH KOH $\mathrm{Ba}(\mathrm{OH})_{2}$ $\mathrm{Ca}(\mathrm{OH})_{2}$	Sodium hydroxide Potassium hydroxide Barium hydroxide Calcium hydroxide	Strong base
Weak acid	$\begin{aligned} & \mathrm{H}_{3} \mathrm{PO}_{4} \\ & \mathrm{HF} \\ & \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \end{aligned}$	Phosphoric acid Hydrofluoric acid Acetic acid	NH_{3}	Ammonia	Weak base

- Strong acids: $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}$
- Strong bases: $\mathrm{LiOH}, \mathrm{KOH}, \mathrm{NaOH}, \mathrm{RbOH}, \mathrm{CsOH}, \mathrm{Ca}(\mathrm{OH})_{2}$, $\mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}$

Acid-Base (Double-Replacement) Reactions

- Acid: substance that breaks apart in water to form \mathbf{H}^{+} (e.g., $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{CH}_{3} \mathrm{COOH}$, lemon, lime, vitamin C). - $\mathrm{HA}(a q) \rightarrow \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)$
- Base: substance that breaks apart in water to form OH (e.g., NH_{3}, Drano ${ }^{\text {TM }}$, Milk of Magnesia ${ }^{\text {TM }}$)
- $\mathrm{MOH}(a q) \rightarrow \mathrm{M}^{+}(a q)+\mathrm{OH}^{-}(a q)$

Acid-Base Neutralization

- Neutralization reaction: reaction between acid and base; products are usually a salt (ionic compound) and water
- $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$ (l)
- Acid + base \rightarrow salt + water
- What are the ionic and net ionic equations for these reactions?
- $\mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow$
- $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow$
- Worked Ex. 4.6, 7; Problems 4.9, 4.10, 11

Group Answers

- Molecular: $3 \mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq})+2 \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq}) \rightarrow$ $\mathrm{Cr}_{2} \mathrm{~S}_{3}(\mathrm{~s})+6 \mathrm{NaNO}_{3}(a q)$
- Complete Ionic: $6 \mathrm{Na}^{+}(\mathrm{aq})+3 \mathrm{~S}^{2-}(\mathrm{aq})+$ $2 \mathrm{Cr}^{3+}(a q)+6 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cr}_{2} \mathrm{~S}_{3}(s)+6 \mathrm{Na}^{+}(a q)$
$+6 \mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$
- Net lonic: $2 \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{~S}^{2-}(\mathrm{aq}) \rightarrow \mathrm{Cr}_{2} \mathrm{~S}_{3}(\mathrm{~s})$

Complete/Balance These Equations

- $\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{CuCl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CuS}(\mathrm{s})$
- $\mathrm{Cu}^{2+}(a q)+\mathrm{S}^{2} \cdot(a q) \rightarrow \mathrm{CuS}(s)$
- $2 \mathrm{KNO}_{3}(a q)+\mathrm{CaCl}_{2}(a q) \rightarrow 2 \mathrm{KCl}(a q)+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(a q)$ - No reaction
- $2 \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathbf{2} \mathbf{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{K}_{2} \mathbf{S O}_{4}(\mathrm{aq})$ - $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Group Work

- Determine the products of the reaction. Identify the phase of each compound, and balance the equation. Also write the ionic and net ionic equations.
- Molecular: $\mathrm{Na}_{2} \mathrm{~S}+\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow$
- Complete Ionic:
- Net lonic:

Complete/Balance These Equations

- Complete and balance these equations. Write ionic and net ionic equations, if applicable.
- $\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{CuCl}_{2}(\mathrm{aq}) \rightarrow$
- $\mathrm{KNO}_{3}(a q)+\mathrm{CaCl}_{2}(a q) \rightarrow$
- $\mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow$

Oxidation-Reduction Reactions

- Oxidation-Reduction (redox) reactions: electron-transfer reactions
- When iron rusts, it loses electrons to form a cation, oxygen gain electrons to form an anion: $4 \mathrm{Fe}(s)+3$ $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
- Use oxidation number rules to determine gain and loss of electrons.
- Oxidation numbers are assigned as if elements in compounds completely transferred electrons (like in ionic compounds).

Assigning Oxidation Numbers

- 1) An atom (or molecule) in its elemental state has an oxidation number of 0 .
- 2) An atom in a monatomic ion $\left(\mathrm{Na}^{+}, \mathrm{Cl}^{-}\right)$has an oxidation number identical to its charge.
- 3a) Hydrogen has an oxidation number of +1 , unless it is combined with a metal, in which case it has an oxidation number of -1 .
- 3b) Oxygen usually has an oxidation number of -2. Oxygen in peroxides $\left(\mathrm{O}_{2}{ }^{2-}\right)$ has an oxidation number of -1 .

Example

- $\mathrm{H}_{2} \mathrm{SO}_{4}$

- $\mathrm{H}=+1 ; \mathrm{O}=-2$
- S is unknown, so leave this for last.
- The overall charge on this compound is 0 .
- Use algebra to solve for S:
- $2(+1)+1(x)+4(-2)=0$
- Solve for each element: $\mathrm{MgCr}_{2} \mathrm{O}_{7}$
- Worked Ex. 4.8; Problem 4.13

Rules continued

- 3c) Halogens usually have an oxidation number of -1 (except when bonded to oxygen or in polyatomic ions).
- 4) The sum of oxidation numbers is 0 for a neutral compound and is equal to the net charge for a polyatomic ion.
(Example: $\mathrm{NaCl}=0, \mathrm{SO}_{4}{ }^{2-}=-2$)
-4a) For binary ionic compounds, the position of the element in the periodic table may be useful:
- Group IA: +1; Group IIA: +2; Group VIIA: -1; Group VIA: -2; Group VA: -3

Assigning Oxidation Numbers

- Determine values of the oxidation number of each element in these compounds or ions:

$\mathrm{H}_{2} \mathrm{O}$	SO_{2}
CCl_{4}	$\mathrm{H}_{2} \mathrm{O}_{2}$
$\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	MnO_{4}^{-}
NaNO_{3}	KClO_{4}

Oxidation-Reduction Reactions

- Oxidized: atom, molecule, or ion becomes more positively charged
- Loss of electrons is oxidation (LEO)
- Reduced: atom, molecule, or ion becomes less positively charged (reduced charge)
- Gain of electrons is reduction (GER)
- Or: OIL RIG (oxidation is loss; reduction is gain)

Group Answers

- $\mathrm{Ba}:+2 \quad \mathrm{~S}:+4$
- $\mathrm{Cl}:+5$

O: -2

- O: -2
- $\mathrm{Cu}(\mathrm{s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
- Cu : oxidized Ag^{+}: reduced
- Cu : reducing agent AgNO_{3} : oxidizing agent

Group Work

- Identify the oxidation number of each element in the compounds or ions below:
- $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2}$
- $\mathrm{SO}_{3}{ }^{2-}$
- For the reaction below, identify what has been oxidized and reduced; identify the oxidizing agent and the reducing agent.
- $\mathrm{Cu}(\mathrm{s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$

Oxidation-Reduction Reactions

- The substance oxidized causes the other substance to be reduced and is called the reducing agent.
- The substance reduced causes the other substance to be oxidized and is called the oxidizing agent.
- $4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)$
- Worked Ex. 4.9; Problems 4.14, 4.15

Redox Reactions

- Combination (1 product)
- $\mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow$
- Decomposition (1 reactant) - usually give off gases
$-\mathrm{CuCO}_{3}(s) \rightarrow$
- Single Replacement (or Displacement) (start and end with an element and a compound)
$-\mathrm{Zn}(\mathrm{s})+\mathrm{HCl}(a q) \rightarrow$

Decomposition Rxns Produce Gases

- Compound $\rightarrow 2$ elements; element + compound; or 2 compounds
- Oxides, peroxides
- Give off O_{2}
- Nitrates
- Give off $\mathrm{NO}_{2}, \mathrm{NO}_{2}-$
- Carbonates
- Give off CO_{2}
- Ammonium salts

- Give off NH_{3}

Single-Displacement Reactions

- element + compound \rightarrow compound + element (The more metallic/active element in the compound is displaced.)
- Metal Displacement
$-\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(a q) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(a q)$
- Hydrogen Displacement
$-\mathrm{Mg}(\mathrm{s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

Single Displacement: $\mathrm{Cu}+\mathrm{AgNO}_{3}$

43

Single Displacement: $\mathrm{Fe}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$

- Methanol, $\mathrm{CH}_{3} \mathrm{OH}$
- _ $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Combustion Reactions

- Burning hydrocarbons
- $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Activity Series

Classify (and balance) these rxns

8. $\mathrm{HgO}(\mathrm{s}) \xrightarrow{\Delta}$
9. $\mathrm{LiOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow$
10. $\mathrm{Na}_{2} \mathrm{CrO}_{4}(\mathrm{aq})+\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow$
11. $\mathrm{Li}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$
12. $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow$
13. $\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \rightarrow$
14. $\mathrm{NiCO}_{3}(\mathrm{~s}) \xrightarrow{\Delta}$
15. $\mathrm{Ca}(\mathrm{s})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow$

Group Work

- Determine what type of reaction will happen for each set of reagents below.
- Predict products of the following reactions.
- Write correct phases for the products and balance each equation:
- ___ $\mathrm{Al}(\mathrm{s})+$ \qquad $\mathrm{NaNO}_{3}(\mathrm{aq}) \rightarrow$
\bullet \qquad $\mathrm{Na}(\mathrm{s})+$ \qquad $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$
- \qquad $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+$ \qquad $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow$

Classify these reactions by type

Single disp. 1. $\mathrm{Co}(\mathrm{s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
Single disp. 2. $\mathrm{Fe}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{FeCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
Decomp. 3. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (s) $\rightarrow \mathrm{Na}_{2} \mathrm{O}$ (s) $+\mathrm{CO}_{2}(\mathrm{~g})$
Single disp. 4. $\mathrm{Ca}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
Decomp. 5. $\mathrm{CaCO}_{3}(\mathrm{~s})+$ heat $\rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
Acid-base neut. 6. $\mathrm{HClO}_{4}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{KCOO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Precip. 7. $\mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})$
Decomp. 8. $2 \mathrm{HgO}(\mathrm{s}) \rightarrow 2 \mathrm{Hg}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$
Acid-base neut. 9. $2 \mathrm{LiOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Li}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Precip. 10. $\mathrm{Na}_{2} \mathrm{CrO}_{4}(\mathrm{aq})+\mathrm{Ni}_{\mathrm{N}}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{NiCrO}_{4}(\mathrm{~s})$
Combo. 11. $4 \mathrm{Li}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}(\mathrm{s})$
Acid-base neut. 12. $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Combo. 13. $\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
Decomp. 14. $\mathrm{NiCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{NiO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
Combo. 15. $\mathrm{Ca}(\mathrm{s})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaF}_{2}(\mathrm{~g})$

Group Answers

- SR: $\mathrm{Al}(\mathrm{s})+\mathrm{NaNO}_{3}(\mathrm{aq}) \rightarrow$ No reaction
- Combo: $4 \mathrm{Na}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$
- DR/PPT: $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow$ $2 \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{PbSO}_{4}(\mathrm{~s})$

The End

- Given reactants, be able to identify the reaction type, predict the products of reaction (with correct phases), and balance the equation similar to the worksheet questions!

